Cellular Engineering in Context

Designing circuits in living cells is messy business.

By , , and | August 1, 2013

View full size JPG | PDFTHE SCIENTIST STAFFCELLULAR ENGINEERING IN CONTEXT

In contrast to other engineering disciplines—in which static elements are snapped into an electrical circuit, for example, or sturdy pieces of lumber are assembled into a larger structure—designing circuits inside living cells is messy business. In the hypothetical example depicted here, genetic components, such as transcription factors (TFs) and green fluorescent protein (GFP) reporters, are first integrated into the yeast genome.1 The addition of a chemical inducer initiates expression of the first component in the circuit, TF12, which in turn activates the expression of a second transcription factor, TF23. Finally, TF2 initiates the expression of GFP4, completing the cascade. In order for the circuit to function properly, the TFs must wade through the crowded and chaotic environment of the cell to do their jobs. Once expressed, they enter the cytoplasm for translation into proteins where they are bound to encounter hundreds or thousands of proteins or other cellular materials5. This risks not only disrupting the intended circuit, but also affecting basic cellular function, possibly disrupting important signaling pathways, for example. Once a transcription factor translocates into the nucleus, it must then find its target sequence among the millions of base pairs of the yeast genome—a challenging combinatorial task. This often leads to nonspecific binding within the genome6, which can perturb off-target genes and once againjeopardize the engineered circuit and cause undesired cellular effects.

Add a Comment

Avatar of: You

You

Processing...
Processing...

Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Popular Now

  1. 2017 Top 10 Innovations
    Features 2017 Top 10 Innovations

    From single-cell analysis to whole-genome sequencing, this year’s best new products shine on many levels.

  2. Thousands of Mutations Accumulate in the Human Brain Over a Lifetime
  3. Antiviral Immunotherapy Comes of Age
    News Analysis Antiviral Immunotherapy Comes of Age

    T-cell therapies are not just for cancer. Researchers are also advancing immunotherapy methods to protect bone marrow transplant patients from viral infections. 

  4. The Rising Research Profile of 23andMe
    News Analysis The Rising Research Profile of 23andMe

    An exploration of the genetics of earlobe attachment is just the latest collaborative research project to come out of the personal genetic testing company.

FreeShip