Cone Cell Correctors

In mice, adult cone cell outer segments and their visual functions deteriorate if two microRNAs are not present.

By | October 1, 2014

EDGE OF SIGHT: The outer segments (green) of photoreceptors in the mouse retina rely upon a pair of microRNAs for proper structure and function. NEURON, BUSSKAMP ET AL., 2014

EDITOR'S CHOICE IN MOLECULAR BIOLOGY

The paper
V. Busskamp et al., “miRNAs 182 and 183 are necessary to maintain adult cone photoreceptor outer segments and visual function,” Neuron, 83:586-600, 2014.

The background
In retinal photoreceptors, the conversion of light to an electrical signal occurs in an organelle known as the outer segment. Malfunctioning outer segments are linked to cone cell diseases and blindness. Previous studies have shown microRNAs (miRNAs)—noncoding RNAs that repress gene expression—are essential to normal cone cell development, but how they operate in adult retinas was unclear.

The experiment
Botond Roska of the Friedrich Miescher Institute for Biomedical Research in Switzerland and his colleagues developed knockout mice and in vitro models in which all miRNAs were depleted in fully formed retinas. Lacking miRNAs, cone cells lost their outer segments and showed reduced responses to light, but the cells did not degenerate. “Finding a phenotype where the cells lose the outer segment but stay absolutely intact was very unexpected,” says Roska. Reexpressing two of the most abundant cone miRNAs, miR-182 and miR-183, restored outer segments and normal light responses in cultured retinal cells.

The functions
These two miRNAs are thought to play a role in lipid metabolism within cells. Roska speculates that they may help regulate a supply of lipids and other molecules to cone cells’ apical membranes to renew outer segments.

The implications
The outer segments restored by miRNAs 182 and 183 in culture are shorter than those in normal mouse retinas. Nonetheless, these miRNAs could enhance the utility of retina-in-a-dish models. “The field is basically stuck right now because nobody knows how to make a photoreceptor outer segment,” says molecular ophthalmologist Jean Bennett of the University of Pennsylvania. “This could be a clue.”

Add a Comment

Avatar of: You

You

Processing...
Processing...

Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Popular Now

  1. That Other CRISPR Patent Dispute
    Daily News That Other CRISPR Patent Dispute

    The Broad Institute and Rockefeller University disagree over which scientists should be named as inventors on certain patents involving the gene-editing technology.

  2. How Gaining and Losing Weight Affects the Body
    Daily News How Gaining and Losing Weight Affects the Body

    Millions of measurements from 23 people who consumed extra calories every day for a month reveal changes in proteins, metabolites, and gut microbiota that accompany shifts in body mass.

  3. Neurons Use Virus-Like Proteins to Transmit Information
  4. DOE-Sponsored Oak Ridge National Laboratory to Cut 100 More Jobs
AAAS