Sponging Up Phosphorus

Symbiotic bacteria in Caribbean reef sponges store polyphosphate granules, possibly explaining why phosphorous is so scarce in coral reef ecosystems.

By | July 1, 2015

SUCK UP: Bacterial symbionts living in tropical sponges, like this giant barrel sponge, produce polyphosphate granules. IMAGE COURTESY OF ANDIA CHAVES-FONNEGRA

EDITOR'S CHOICE IN MARINE BIOLOGY

The paper
F. Zhang et al., “Phosphorus sequestration in the form of polyphosphate by microbial symbionts in marine sponges,” PNAS, 112:4381-86, 2015.

Dyed surprise
Fan Zhang, a graduate student in Russell Hill’s lab at the University of Maryland Center for Environmental Science, was using microscopy to study how Caribbean coral reef sponges process nitrogen. But the sponges autofluoresced so brightly that their nitrogen-fixing bacterial symbionts were difficult to see. To detect the bacteria, Zhang applied a blue fluorescent stain called DAPI, but to his surprise, he saw something else: bright yellow dots.

Bacterial origins
An Internet search suggested that polyphosphate—chains of phosphate molecules—could be the cause, and indeed, with specific extraction methods and scanning electron microscopy, Zhang’s team observed polyphosphate granules that accounted for up to 40 percent of the phosphorus in three sponge species. To find the source, the researchers cultured the symbiotic cyanobacteria, finding that they contained not only polyphosphate granules but the genes necessary to make them.

Nutrient network
Sponges were already known to provide carbon and nitrogen to the reef community. The symbiont-synthesized polyphosphate granules sequestered in the sponges now made it clear “that sponges are right at the center of cycling of phosphorus in coral reef ecosystems,” Hill says.

Sponge sinks?
Sponges may serve as sinks that remove phosphorus from the ecosystem, says Fleur van Duyl of the Royal Netherlands Institute for Sea Research. This could explain why phosphorus is considered the limiting nutrient on some reefs, she adds. Filling in the remaining details of the sponge phosphorus cycle could help researchers predict what might happen to the nutrient balance on reefs as the climate changes and sponges become more prevalent there, Hill says.

Add a Comment

Avatar of: You

You

Processing...
Processing...

Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Comments

Avatar of: T S Raman

T S Raman

Posts: 51

July 2, 2015

I am reminded of the legendary scientist, the late Professsor Harland Wood:

“Harland Wood was a pioneer in studying the role of pyrophosphate and polyphosphate as energy sources. It was at one tme believed that the energy contained in the anhydride bond of pyrophosphate is not utilized efficiently by cells. However, Harland Wood, together with Nelson Phillips, showed this not to be true by the isolation and characterization of bacterial enzymes that utilize pyrophosphate in reaction with oxaloacetate, with phosphoenolpyruvate, and with fructose-6-phosphate. Wood further showed that a bacterial glucokinase utilizes polyphosphate much more effectively than ATP in the reaction with glucose.

(Lightly paraphrased excerpt from "Harland Goff Wood, 1907—1991; A Biographical Memoir by David A. Goldthwait And Richard W. Hanson; National Academy of sciences, 1996)”

Popular Now

  1. Thousands of Mutations Accumulate in the Human Brain Over a Lifetime
  2. Two Dozen House Republicans Do an About-Face on Tuition Tax
  3. 2017 Top 10 Innovations
    Features 2017 Top 10 Innovations

    From single-cell analysis to whole-genome sequencing, this year’s best new products shine on many levels.

  4. The Biggest DNA Origami Structures Yet
    Daily News The Biggest DNA Origami Structures Yet

    Three new strategies for using DNA to generate large, self-assembling shapes create everything from a nanoscale teddy bear to a nanoscale Mona Lisa.

FreeShip