Bio-Rad Introduces First Droplet Digital™ PCR–Based Assays to Quickly Quantify CRISPR Efficiency

Today announced the launch of ddPCR Genome Edit Detection Assays

By | July 7, 2017

Request More Information
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), today announced the launch of ddPCR™ Genome Edit Detection Assays, the first tests to characterize edits generated by CRISPR-Cas9 or other genome editing tools using Bio-Rad’s Droplet Digital PCR (ddPCR) technology. Users can specify their sequences and order assays through Bio-Rad’s Digital Assay Site.
Successful genome editing is a rare outcome that depends substantially on experimental conditions including type of cells used, transfection method, target sequence, and many other factors. Editing stem cell genomes, for example, typically succeeds in less than 5% of cells.
Current methods for assessing genome edit efficiency, including next-generation sequencing (NGS) and high resolution melt analysis, present drawbacks in cost, time, simplicity, and sensitivity. With NGS, for example, turnaround time is often several weeks and analysis is complex and costly, making NGS less than optimal for routine screening. Additionally, maximum sensitivity requires researchers to sequence the same DNA many times, which can greatly inflate time and expense.
Bio-Rad’s ddPCR technology is well suited for the task of genome editing, empowering scientists to precisely evaluate the efficiency of their experiment in less time and at lower cost than with any other method. By partitioning samples into thousands of droplets, ddPCR technology increases the signal-to-noise ratio, which allows users to quantify extremely rare edits — even frequencies of 0.5% and from as little as 5 ng of genomic DNA — and still obtain the results within one day.
Edit Detection Enables New Applications for Gene Editing
Bio-Rad’s offering follows a wave of research in ddPCR methods to measure genome-editing efficiency. In 2015, Science published a ddPCR-based method used at Duke University to detect edits designed to treat Duchenne muscular dystrophy in mice. The following year, research papers in Nature Protocols and Scientific Reports further detailed more ddPCR strategies for assessing genome editing outcomes. In a study released this year, researchers at the Broad Institute of MIT and Harvard used ddPCR to verify the sensitivity of an innovative CRISPR-based nucleic acid detection platform.
“Genome editing holds great promise not only in basic and applied science, but particularly in the area of gene therapy,” said Boris Fehse, a professor of cell and gene therapy in Hamburg, Germany, and an author of the Nature Protocols paper. “Therapeutic applications require reliable, highly sensitive, and easy-to-perform assays to monitor efficiency as well as potential side effects. In my opinion, digital PCR represents an ideal tool fulfilling these requirements.”


Request More Information

Product Details

Bio-Rad Laboratories, Inc. Digital PCR Assay

image of: Bio-Rad Laboratories, Inc. Digital PCR Assay

Our digital PCR assays are hydrolysis probe–based assays that were designed by experts in the digital PCR field.

Request More Information

Your Request
About You
Enter text from the image above:

Add a Comment

Avatar of: You



Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Popular Now

  1. 2017 Top 10 Innovations
    Features 2017 Top 10 Innovations

    From single-cell analysis to whole-genome sequencing, this year’s best new products shine on many levels.

  2. Thousands of Mutations Accumulate in the Human Brain Over a Lifetime
  3. Antiviral Immunotherapy Comes of Age
    News Analysis Antiviral Immunotherapy Comes of Age

    T-cell therapies are not just for cancer. Researchers are also advancing immunotherapy methods to protect bone marrow transplant patients from viral infections. 

  4. The Rising Research Profile of 23andMe
    News Analysis The Rising Research Profile of 23andMe

    An exploration of the genetics of earlobe attachment is just the latest collaborative research project to come out of the personal genetic testing company.