Microglia Turnover in the Human Brain

Researchers find that about a quarter of the immune cells are replaced every year.

By | October 1, 2017

THE BRAIN’S SENTINELS: Microglia (stained green in this rat brain culture) fight infection in the central nervous system. Neuronal processes stained in red.© GERRY SHAW/WIKIMEDIA COMMONS

The paper
P. Réu et al., “The lifespan and turnover of microglia in the human brain,” Cell Rep, 20:779-84, 2017.

A renewable resource?
Evidence has emerged that some of the brain’s cells can be renewed in adulthood, but it is difficult to study the turnover of cells in the human brain. When it comes to microglia, immune cells that ward off infection in the central nervous system, it’s been unclear how “the maintenance of their numbers is controlled and to what extent they are exchanged,” says stem cell researcher Jonas Frisén of the Karolinska Institute in Sweden.

Nuclear signature
Frisén and colleagues used brain tissue from autopsies, together with the known changes in concentrations of carbon-14 in the atmosphere over time, to estimate how frequently microglia are renewed. They also analyzed microglia from the donated brains of two patients who had received a labeled nucleoside as part of a cancer treatment trial in the 1990s.

Slow churn
Microglia, which populate the brain as blood cell progenitors during fetal development, were replaced at a median rate of 28 percent per year; on average, the cells were 4.2 years old. For Marie-Ève Tremblay, a neuroscientist at the Université Laval in Québec City who was not involved in the study, what stands out is the range of microglia ages found—from brand-new to more than 20 years old. “That’s quite striking!” she writes in an email to The Scientist.

Different strokes
Tremblay notes that this variation in age meshes with the heterogeneity of microglia types that has begun to emerge in other studies. “With electron microscopy, we find a variety of immune cells in the brain, especially in contexts of disease,” she writes.
 

Add a Comment

Avatar of: You

You

Processing...
Processing...

Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Comments

Avatar of: James V. Kohl

James V. Kohl

Posts: 481

October 3, 2017

“With electron microscopy, we find a variety of immune cells in the brain, especially in contexts of disease,” she writes.

Richard Feynman predicted this in the context of a lecture on nanotechnology.

He presciently placed cryo-EM into the context of a lecture about Plenty of Room at the Bottom. Examination at this level of observable energy-dependent top-down causation has since linked the sun's anti-entropic virucidal energy from hydrogen-atom transfer in DNA base pairs in solution to supercoiled DNA, which protects all organized genomes from virus-driven entropy.

See for review: RNA-mediated molecular epigenetics and virus-driven entropy

Popular Now

  1. Thousands of Mutations Accumulate in the Human Brain Over a Lifetime
  2. 2017 Top 10 Innovations
    Features 2017 Top 10 Innovations

    From single-cell analysis to whole-genome sequencing, this year’s best new products shine on many levels.

  3. Search for Life on the Red Planet
  4. Two Dozen House Republicans Do an About-Face on Tuition Tax
FreeShip