Study Raises Questions About Patient-Derived Xenografts

When transplanted into mice, tumor genomes evolve differently than they do in patients, study finds.

By | October 10, 2017

Glioblastoma in a 15-year-old boyWIKIMEDIA, CHRISTARAS AIn recent years, researchers have been transplanting tumors from patients, called patient-derived xenografts (PDXs), into mice to study the cancers and their responses to drugs. A study published yesterday (October 9) in Nature Genetics raises questions about how well these models represent human cancers. The study finds that when transplanted into mice, the cancers undergo different genomic changes than they do in human hosts.

“The assumption is that what grows out in the PDX is reflective of the bulk of the tumor in the patient,” study author and cancer geneticist Todd Golub, of both the Broad Institute, at MIT, and Harvard, tells Nature News. “But there’s quite dramatic resculpting of the tumor genome.”

Previous research had suggested that PDXs were fairly good representatives of human cancers, and researchers have invested heavily in PDX development. Both in the U.S. and Europe researchers have developed PDX libraries and repositories.

To take a closer look at how well PDXs recapitulate human cancers, researchers relied on publicly available data about changes in gene copy number (in some cases extrapolated from gene expression data) in PDXs. They compared these data with equivalent data about the human tumors from which the PDXs were derived. They also compared data from the PDXs with human cancer data from the Cancer Genome Atlas. In total, the study included more than 1,000 PDX samples representing 24 cancer types.

Genetic changes occurring in PDXs were often different than those in human patients, the study reports. For example, human glioblastomas often gain copies of chromosome seven, but glioblastoma-derived PDXs tend to lose copies of chromosome seven, Nature News reports.

See “My Mighty Mouse”

One function of PDXs is to create cancer models for drug testing. Accordingly, the researchers investigated the relationship between genome instability in PDXs and responses to cancer treatments, using available data. They found that the kinds of changes occurring in PDXs affect their responses to different cancer drugs.

Golub worries about how these changes could affect the ability to predict individual patients’ responses to drugs using PDX models, which function as the patients’ “avatars,” he tells Nature News. “It raises some important questions around how to interpret the results of avatars,” he says.

Yet several researchers tell Nature News that even in light of these findings, PDXs are useful and will continue to be so. “We’re going to continue to see a lot of activity with these models—they are a great development, not a hindrance,” says Carlos Caldas, a researcher at the Cancer Research U.K. Cambridge Institute at the University of Cambridge, tells Nature News. “They are here to stay.”

Add a Comment

Avatar of: You

You

Processing...
Processing...

Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Comments

Avatar of: Paul Stein

Paul Stein

Posts: 237

October 11, 2017

And here is where "translational scientists" are probably killing us people.  No one until now has questioned the idiocy of counting solely on a tiny primative mammal for all sorts of medical breakthroughs?  Still, that last paragraph is telling.  Despite their own facts, the researchers decide to ignore them.  This blindness has stalled research for decades and will continue to impede it.  Investigators have seen in many fields how "therapies" in mice for all sorts of maladies fail in humans.  Medical scientists may say they aren't trying to cure diseases in mice, but that's the only thing they end up doing.  These people are comparative physiologists, not medical researchers. 

Popular Now

  1. 2017 Top 10 Innovations
    Features 2017 Top 10 Innovations

    From single-cell analysis to whole-genome sequencing, this year’s best new products shine on many levels.

  2. Thousands of Mutations Accumulate in the Human Brain Over a Lifetime
  3. Antiviral Immunotherapy Comes of Age
    News Analysis Antiviral Immunotherapy Comes of Age

    T-cell therapies are not just for cancer. Researchers are also advancing immunotherapy methods to protect bone marrow transplant patients from viral infections. 

  4. The Rising Research Profile of 23andMe
    News Analysis The Rising Research Profile of 23andMe

    An exploration of the genetics of earlobe attachment is just the latest collaborative research project to come out of the personal genetic testing company.

FreeShip