Infographic: Understanding Our Diverse Brain

Recent advances in single-cell omics and other techniques are revealing variation at genomic, epigenomic, transcriptomic, and posttranscriptomic levels.

By , , and | November 1, 2017


Of the 100 billion or so neurons in the human brain, there may be no two that are alike. Such diversity can arise at all stages of development and into adulthood. In the case of genetic changes that are passed on to daughter cells, the stage at which mutations occur will dictate their frequency in the brain. Researchers are now working hard to catalog every cell type within the human brain, and understand how differences among them may underlie variation in neuronal function. There are early hints that this mosaicism may contribute to personality and behavioral differences among individuals, as well as to various neurological or psychiatric disorders.

Mutations such as single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) are common contributors to variation among neuronal genomes (left). Retrotransposons such as L1s that can jump around the genome can also introduce changes (left, above).
Beyond genomic variation, differences in histone and DNA methylation, among other epigenetic changes, can affect neurons’ gene expression, leading to variation in the cells’ transcriptomes.
After proteins are produced, further variation can stem from the addition of sugars and other molecules that may affect stability and where the proteins go in the cell.
Differences in how expressed RNAs are processed into final transcripts for translation can lead to variability in protein structure and levels.
As neurons fire, they undergo molecular changes that affect their morphology, their tendency to fire again, and the amount of neurotransmitter they release. These and other responses to the local environment contribute to the overall diversity seen among individual neurons of the brain.


Although it was once assumed that all cells within an organism shared an identical genome, researchers now know this not to be true. Genetic variation can arise at any time, and these changes will be passed down to future generations of cells. Thus, mutations that occur early in development will lead to larger cell populations that carry the change, whereas mutations that occur in terminal cell lineages will be contained in relatively few cells.


Read the full story.

Add a Comment

Avatar of: You



Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Popular Now

  1. How Gaining and Losing Weight Affects the Body
    Daily News How Gaining and Losing Weight Affects the Body

    Millions of measurements from 23 people who consumed extra calories every day for a month reveal changes in proteins, metabolites, and gut microbiota that accompany shifts in body mass.

  2. That Other CRISPR Patent Dispute
    Daily News That Other CRISPR Patent Dispute

    The Broad Institute and Rockefeller University disagree over which scientists should be named as inventors on certain patents involving the gene-editing technology.

  3. Neurons Use Virus-Like Proteins to Transmit Information
  4. EPO Revokes Broad’s CRISPR Patent
    The Nutshell EPO Revokes Broad’s CRISPR Patent

    Shortly after ruling out the earliest priority dates on a foundational patent for CRISPR gene-editing technology, the European Patent Office rescinded the patent entirely—and more are likely to follow.