Immune System Targets Diverse Viruses Using the Same Small Peptide

A single receptor on natural killer cells recognizes an amino acid sequence conserved across Zika, dengue, and related pathogens.

By Catherine Offord | December 1, 2017

KNOW YOUR ENEMY: Natural killer cells, like the one attacking this larger cancer cell, can be activated by cell-surface receptors called activating KIRs. GWENOLINE BORHIS


The paper
M.M. Naiyer, “KIR2DS2 recognizes conserved peptides derived from viral helicases in the context of HLA-C,” Science Immunology, 2:eaal5296, 2017.

Killing machines
Natural killer (NK) cells help fight viral infections as part of the body’s innate immune response. Activation of these cells depends partly on a set of NK cell-surface proteins called activating killer cell immunoglobulin-like receptors (KIRs). But how activating KIRs recognize pathogens is poorly understood.

Searching for a match
While screening for viral peptides that stimulate one receptor, KIR2DS2, hepatologist Salim Khakoo’s group at the University of Southampton, U.K., stumbled across an amino acid sequence that appears highly conserved across multiple flaviviruses, from Zika to Japanese encephalitis. “There are about 63 different flaviviruses, and they almost all have this five-amino-acid sequence,” says Khakoo. “We were absolutely astonished.”

One size fits all
Using human cell lines, the team showed that major histocompatibility complex proteins—important components of the vertebrate immune system—on virus-infected cells present this sequence to KIR2DS2, which then activates NK cells to inhibit viral replication. The fact that multiple viruses stimulate the same receptor suggests the possibility of developing broadly antiviral therapeutics, Khakoo says. “We’re working on ways of using this knowledge to activate natural killer cells, and develop a natural killer cell–based vaccine strategy.”

Out of lines
KIR researcher Marcus Altfeld of the Leibniz Institute for Experimental Virology in Germany says he’s impressed by the study’s description of KIR2DS2’s mechanism of action. However, he notes, “cell lines create a bit of an artificial system. . . . The next challenge will be to see whether these responses can be seen in cells from a patient.”

Add a Comment

Avatar of: You



Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Popular Now

  1. Stem Cell Vaccine Protects Mice From Cancer
  2. Love in the Scientific Literature
    News Analysis Love in the Scientific Literature

    There are countless ways for scientists to say, “I love you.” Naming a slime-mold beetle after your wife (and another after your ex-wife) is, apparently, one of them.  

  3. DNA Robots Target Cancer
    Daily News DNA Robots Target Cancer

    Researchers use DNA origami to generate tiny mechanical devices that deliver a drug that cuts off the blood supply to tumors in mice.

  4. CDC: Flu Vaccine 36 Percent Effective So Far