Loading...

Image of the Day: Gene Expression

A new algorithm scrutinizes the most hard-to-read segments of the genome.

By The Scientist Staff | April 9, 2018

Gradually eliminating low-affinity binding sites identified by the new algorithm results in a gradual reduction (from left to right) of gene expression (white) in fruit fly larvae.MANN LAB/COLUMBIA’S ZUCKERMAN INSTITUTE

Columbia University biochemists reported last week (April 2) in PNAS that they developed a computer algorithm that quantifies the relationship between transcription factors and the DNA they regulate. The algorithm can also accurately predict the effect of mutations on gene expression even for very low-affinity binding sites—regions in the genome where transcription factors bind to DNA, but do so in hard-to-detect ways.

“The genomes of even simple organisms such as the fruit fly contain 120 million letters worth of DNA, much of which has yet to be decoded because the cues its provides have been too subtle for existing tools to pick up,” says coauthor Richard Mann, a biochemist at Columbia University in a statement. “But our new algorithm lets us sweep through these millions of lines of genetic code and pick up even the faintest signals, resulting in a much more complete picture what DNA encodes.”

C. Rastogi et al., “Accurate and sensitive quantification of protein-DNA binding affinity,” PNAS, doi:10.1073/pnas.1714376115, 2018.

Add a Comment

Avatar of: You

You

Processing...
Processing...

Sign In with your LabX Media Group Passport to leave a comment

Not a member? Register Now!

LabX Media Group Passport Logo

Popular Now

  1. Estonia Offers Free Genetic Testing to Residents
  2. Human Brain Organoids Thrive in Mouse Brains
  3. New Ovarian Cancer Vaccine Shows Promise
  4. The Second March for Science a Smaller Affair