Long live the worm!

In tomorrow's (July 1) issue of Genes & Development, Siu Sylvia Lee, of the department of molecular biology and genetics at Cornell University in Ithaca, NY, and Gary Ruvkun, of the department of genetics at Harvard Medical School, report ?the first genome-wide functional genomic screen for longevity genes.? The two teams used a library of 16,475 RNA interference constructs (created by Julie Ahringer at the University of Cambridge, UK) to inactivate genes in the nematode, Caenorhabditis eleg

By | June 30, 2005

In tomorrow's (July 1) issue of Genes & Development, Siu Sylvia Lee, of the department of molecular biology and genetics at Cornell University in Ithaca, NY, and Gary Ruvkun, of the department of genetics at Harvard Medical School, report ?the first genome-wide functional genomic screen for longevity genes.? The two teams used a library of 16,475 RNA interference constructs (created by Julie Ahringer at the University of Cambridge, UK) to inactivate genes in the nematode, Caenorhabditis elegans. Their analysis yielded a list of 89 candidate genes, 33 of which have clear orthologs in fruit fly, mouse, or humans, suggesting evolutionary conservation of aging's regulators. The findings, Ruvkun told me, mark the insulin-signaling pathway as a potent arbiter of longevity in the worm. So, for instance, ablation of the age-1 (phosphatidylinositol 3- and 4-kinase) and akt-1 (serine/threonine kinase) genes both resulted in ?robust lifespan extension? ? the age-1 knockout worms lived 31.5 days, compared to a control lifespan of about 18.5 days. But, Ruvkin said, ?I think it?s the new genes that we don?t know how to think about that that are most exciting.? Some 20 or so genes identified in the screen have no known biological function. Next up: Tagging the genes with green fluorescent protein to monitor their expression and localization during the aging process. ?The first step is to generate lists,? he said. ?The second step is to sort those lists into pathways, and that?s a lot more work.?

Popular Now

  1. 2017 Top 10 Innovations
    Features 2017 Top 10 Innovations

    From single-cell analysis to whole-genome sequencing, this year’s best new products shine on many levels.

  2. Thousands of Mutations Accumulate in the Human Brain Over a Lifetime
  3. Antiviral Immunotherapy Comes of Age
    News Analysis Antiviral Immunotherapy Comes of Age

    T-cell therapies are not just for cancer. Researchers are also advancing immunotherapy methods to protect bone marrow transplant patients from viral infections. 

  4. The Rising Research Profile of 23andMe
    News Analysis The Rising Research Profile of 23andMe

    An exploration of the genetics of earlobe attachment is just the latest collaborative research project to come out of the personal genetic testing company.

FreeShip