A genome center on a chip?

A nifty paper in yesterday's online edition of PNAS could presage the future of microfluidics development -- not to mention of sequencing technology. linkurl:Richard Mathies;http://chem.berkeley.edu/people/faculty/mathies/mathies.html of the University of California, Berkeley, and colleagues linkurl:report;http://www.pnas.org/cgi/doi/10.1073/pnas.0602476103 the development of an integrated chip capable of performing the complete Sanger sequencing protocol, from template to gel. Lab-on-a-chip, o

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share
A nifty paper in yesterday's online edition of PNAS could presage the future of microfluidics development -- not to mention of sequencing technology. linkurl:Richard Mathies;http://chem.berkeley.edu/people/faculty/mathies/mathies.html of the University of California, Berkeley, and colleagues linkurl:report;http://www.pnas.org/cgi/doi/10.1073/pnas.0602476103 the development of an integrated chip capable of performing the complete Sanger sequencing protocol, from template to gel. Lab-on-a-chip, or microfluidic devices, have been long been heralded as the future of life science research. We linkurl:profiled;http://www.the-scientist.com/article/display/15690/ the technology last year in our feature on "linkurl:Seven technologies;http://www.the-scientist.com/2005/8/29/ that are transforming the life sciences." Most existing microfluidic chips have been fairly rudimentary affairs, however, tackling such "low-hanging fruit" as simple electrophoretic separations and sample cleanup, for instance. It's actually been possible to run sequencing separations themselves on microfluidic platforms for at least a decade. But that was using reactions that were performed off-line. With this latest development, that step has now been integrated onto the chip. From 1 femtogram of starting material in a 250-nanoliter reaction, the system (built of glass and rubbery polydimethylsiloxane) performs thermal cycling, sample purification, and capillary electrophoresis to produce some 556 continuous bases of sequence at 99% accuracy. That's a bit on the short side for traditional Sanger sequencing, where reads can top 800 bases per run, but is far longer than that given by new technologies from 454 Life Sciences, for instance. The authors indicate they are working to reduce template requirements 10-fold, to 100 attomoles, and say they could possibly go even lower. At those levels, they continue, it should be possible to sequence PCR fragments directly, rather than having to clone them first -- a development that would remove one of the chief shortcomings of Sanger sequencing relative to these newer methods. Indeed, the authors say they "are working toward a Microbead Integrated DNA Sequencer (MINDS) that parses PCR-colony beads into discrete thermal cycling chambers coupled to purification and electrophoretic separation to produce a fully integrated genome-center-on-a-chip." Mathies is a consultant with Microchip Biotechnologies Inc., a company that is working to commercialize microchip sequencing technologies and may therefore benefit from the results of this research.
Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Jeff Perkel

    This person does not yet have a bio.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
Explore polypharmacology’s beneficial role in target-based drug discovery

Embracing Polypharmacology for Multipurpose Drug Targeting

Fortis Life Sciences
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit

BIOVECTRA

BIOVECTRA is Honored with 2025 CDMO Leadership Award for Biologics

Sino Logo

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo