Bacteria fix DNA like mammals

Double-strand DNA break repair pathways appear conserved, suggesting new ways to make libraries

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Bacteria and mammals may use similar mechanisms in a major yet poorly understood DNA repair pathway, suggests a report in the October 22 Science.

In theory, coauthor Aidan Doherty of the University of Sussex in Brighton told The Scientist, this system—uses of which are the subject of a patent filed by the University of Cambridge—should enable the cloning of any DNA fragments, regardless of the structure of the ends, and has great potential for the generation of random DNA libraries.

Non-homologous end joining (NHEJ) is the main pathway for resection and repair of DNA double-strand breaks (DSBs) with incompatible ends in mammalian cells. The mechanisms required in NHEJ are poorly understood. Many DSBs require processing by polymerases and nucleases to produce ligatable termini. The Mycobacterium tuberculosis DNA repair ligase, Mt-Lig, has domains exhibiting significant homology with polymerases and possibly nucleases, suggesting it might prove a model for NHEJ.

Doherty's team ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Charles Choi

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours