Brain Circuitry for Fear and Anxiety Is the Same on fMRI

A study in people fails to detect differences in the brain’s response to fear or anxiety, long thought to be controlled by different neural circuits.

Written byAmanda Heidt
| 5 min read
fear, anxiety, fMRI, study, neural circuits, brain study, neuroscience, amygdala, BNST

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ABOVE: © ISTOCK.COM, TADAMICHI

A prevailing belief in neuroscience has long been that fear and anxiety are distinct emotions, prompted by different stimuli that in turn activate different regions of the brain. Fear is a more basal response to an immediate threat thought to be controlled by the amygdala, while anxiety, linked to a part of the brain known as the bed nucleus of the stria terminalis, or BNST, plays out over time and doesn’t always stem from obvious danger.

Scientists are now challenging the belief that the two emotions are segregated in the brain. A study published September 21 in The Journal of Neuroscience demonstrates that when people are subjected to a certain threat meant to prompt fear or an uncertain threat that evokes anxiety, their brains seem to react the same, calling upon both the amygdala and the BNST in their response. While fear and anxiety are distinct ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • amanda heidt

    Amanda first began dabbling in scicom as a master’s student studying marine science at Moss Landing Marine Labs, where she edited the student blog and interned at a local NPR station. She enjoyed that process of demystifying science so much that after receiving her degree in 2019, she went straight into a second master’s program in science communication at the University of California, Santa Cruz. Formerly an intern at The Scientist, Amanda joined the team as a staff reporter and editor in 2021 and oversaw the publication’s internship program, assigned and edited the Foundations, Scientist to Watch, and Short Lit columns, and contributed original reporting across the publication. Amanda’s stories often focus on issues of equity and representation in academia, and she brings this same commitment to DEI to the Science Writers Association of the Rocky Mountains and to the board of the National Association of Science Writers, which she has served on since 2022. She is currently based in the outdoor playground that is Moab, Utah. Read more of her work at www.amandaheidt.com.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems