Meet some of the people featured in the March 2018 issue of The Scientist.

Mar 1, 2018
The Scientist Staff

While Daniel Klionsky was an undergraduate at UCLA in the 1980s, introductory biology was one of his favorite courses. A “very enthusiastic” instructor got him interested in marine biology, and Klionsky spent a quarter studying the subject on Catalina Island, one of California’s Channel Islands, which lie a short ferry ride from L.A. “We would take these research vessels that were bathtub-shaped and slow,” every wave rocking the boats, he recalls. Later, Klionsky used electron microscopy to study cell structure and function as part of a course, and he decided to pursue cell biology. Now running his own lab at the University of Michigan, Klionsky says he’s excited by the prospect of translating his research on mutations that affect autophagy in yeast cells into cancer treatments. “We’re getting these subtle mutations that allow growth while increasing autophagy.”

“I initially wanted to study literature,” graduate student Vikramjit Lahiri says. “I used to read anythingI could get my hands on.” Lahiri’s favorite author was Khalid Hosseini, who wrote The Kite Runner, but he loved the classics as well. “My favorite novel, since childhood, has always been David Copperfield,” he says. Lahiri eventually decided to pursue a career in the life sciences because he found research similarly ascinating. He studied biology as an undergraduate, and after completing two post-graduation fellowships in evolutionary biology, he went on to earn a master’s degree in molecular biology and biotechnology at Calcutta University. As a PhD candidate in Klionsky’s University of Michigan lab, Lahiri studies the process by which autophagy is regulated in yeast cells. He’s focused on discovering how each cell orchestrates the contributions of some 40 proteins. Lahiri also enjoys writing. “Working in the lab and doing experiments is rewarding, but writing has its own rewards for me,” he says.

Lahiri and Klionsky describe new insights into the process of autophagy here.


Patricia Fara’s early interest in mathematics and science led her to study physics at the University ofOxford in 1966. At the time, “it was a very unusual thing to do,” she says: she was one of around eight women in her class, which held 220 men. Fara quickly realized that she didn’t particularly enjoy the practical side of physics, and was more interested in bigger, philosophical questions. After working for several years setting up a company that produced educational slide programs, Fara decided to return to academia, pursuing a master’s degree in history and philosophy and a PhD in the history of science at the University of London. In 1993, she moved to the University of Cambridge as a postdoc, and has been there since, as an affiliate lecturer and director of studies in the university’s history and philosophy of science department. Fara is president of the British Society for the History of Science and has authored several books on the topic, including Science: A Four Thousand Year History. “For me, it’s always been really important not only to write academic articles,” she says, but to explain “intellectual ideas to a much wider public.” Fara’s most recent book, A Lab Of One’s Own: Science and Suffrage in the First World War, chronicles the change in women’s roles in science throughout World War I, and how this paved the way for today’s female scientists.

Read Fara’s essay about her new book here.

Ashley Yeager knew early on that she wanted to go into writing. Her favorite part of doing science experiments with her parents—both science teachers—wasn’t the lab work, it was writing up the results at the end, “because I got to tell a story,” she says. Yeager went on to study communication and information at the University of Tennessee as an undergrad. It was only when an advisor there encouraged her to try out a science writing class that she realized that the subject would be a good fit for her. “I fell in love with science writing,” Yeager says. A subsequent master’s degree in science writing from MIT made her certain she was on the right track. For the next nine years, Yeager dabbled in the field, doing internships at Science News and Nature, editing academic books for professors, working as a web producer at Science News, and serving as an information officer at the W.M. Keck Observatory in Hawaii. For the past year, she has been freelancing for The Scientist, and in January she accepted a position as associate editor. Yeager says she looks forward to writing and editing stories for the magazine, but most of all, to “getting to learn something new every day.”

April 2019

Will Car T Cells Smash Tumors?

New trials take the therapy beyond the blood


Sponsored Product Updates

Application of TruBIOME™ to Increase Mouse Model Reproducibility
Application of TruBIOME™ to Increase Mouse Model Reproducibility
With this application note from Taconic, learn about the effects of the microbiome on reproducibility and predictability and how TruBIOME™ helps researchers generate custom microbiota mouse models!
Getting More Consistent Results by Knowing the Quality of Your Protein
Getting More Consistent Results by Knowing the Quality of Your Protein
Download this guide from NanoTemper to learn how to identify and evaluate the quality of your protein samples!
Myth Busting: The Best Way to Use Pure Water in the Lab
Myth Busting: The Best Way to Use Pure Water in the Lab
Download this white paper from ELGA LabWater to learn about the role of pure water in the laboratory and the advantages of in-house water purification!
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu Corporation announces the release of the Nexera Ultra High-Performance Liquid Chromatograph series, incorporating artificial intelligence as Analytical Intelligence, allowing systems to detect and resolve issues automatically. The Nexera series makes lab management simple by integrating IoT and device networking, enabling users to easily review instrument status, optimize resource allocation, and achieve higher throughput.