Menu

Duplicated Genes May Reduce Resilience in Yeast

Researchers find that some duplicated yeast genes develop dependency—the loss of one copy leads to the failure of the other.

Feb 13, 2017
Diana Kwon

RAINIS VENTA, WIKIMEDIA

Gene duplications are a major contributor to functional diversity within species. At times, extra copies of a gene can act as a backup mechanism to compensate when one gene fails. Some duplicated pairs, however, are dependent on one another, and the loss of one will lead to the failure of the other, according to a yeast genetics study published last week (February 9) in Science.

“One of the main mechanisms that people identified years ago was that gene duplications promoted the robustness of cells,” said coauthor Christian Landry, an evolutionary geneticist at Laval University in Canada. “People have observed at the genetic level that if you have two copies of the gene and you remove one, then nothing happens.”

Landry and colleagues sought to determine whether knocking out duplicated genes would have the same effect on protein-protein interactions. To do so, they looked at 56 paralogs (duplicated genes) in yeast, examining how knocking out one gene would affect the resulting protein interactions within the cell. To visualize protein-protein interactions, the researchers attached a reporter enzyme to the proteins that reconstitutes when two proteins interact under certain cellular growth conditions. “We can detect interactions between proteins if the cell grows on a specific medium,” Landry explained.

In 22 of the 56 pairs examined, the researchers found what they expected. When one paralog was removed, the other compensated for the loss of its partner, interacting with the proteins that used to interact with the copy that was lost.

“Compensation is not new in the field, but the specific phenomenon they discovered is new,” said Jianzhi George Zhang, a molecular geneticist at the University of Michigan who was not involved in the study. “Usually we say that when you delete one copy, the function isn’t lost because the other copy can do its job,” Zhang said. “Here they’re saying that when you delete one copy, the other copy enhances its function, actively compensating the other copy.”

In another 22 of the pairs, the researchers observed dependency: when they removed one the paralogs, the other also lost its interactions with proteins. “By removing one copy, what we observed was something that would be the same as removing the two copies,” Landry said. “That’s why we say it becomes more fragile . . . before you had one gene that you could mutate, now you have two genes that you can mutate to disrupt the same function.”

However, some experts who were not involved in the study do not agree that the authors show proof of gene duplications leading to fragility.  

“Dependency, certainly to me, is a new thing and that’s a very interesting discovery,” said Kenneth Wolfe, a professor of genome evolution and bioinformatics at University College Dublin. “But to say that the existence of dependency makes the modern organism with the duplicated gene have a more fragile network than the network the existed in the ancestral organism without a duplicated gene pair: I think that’s a questionable interpretation.” 

“I don’t think [dependency] increases the fragility,” Zhang told The Scientist. “It’s equivalent to deleting the common ancestor gene of the two copies.”

According to Zhang, in order to conclude that gene duplication imparts fragility, the researchers would need observe that deletion of one of the two copies of a duplicated gene had a stronger effect on function than deleting the common ancestor gene in a related yeast species in which the gene had not duplicated.

“Comparing to the ancestral gene would be a strong addition to our study,” Landry said. “That’s something we’re testing now.”

G. Diss et al., “Gene duplication can impart fragility, not robustness, in the yeast protein interaction network,” Science, doi:10.1126/science.aai7685, 2017.

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

StemExpress LeukopakâNow Available in Frozen Format

StemExpress LeukopakâNow Available in Frozen Format

StemExpress, a Folsom, California based leading supplier of human biospecimens, announces the release of frozen Peripheral Blood Leukopaks. Leukopaks provide an enriched source of peripheral blood mononuclear cells (PBMCs) with low granulocyte and red blood cells that can be used in a variety of downstream cell-based applications.

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

Vector Laboratories, a leader in the development and manufacture of labeling and detection reagents for biomedical research, introduces VECTASHIELD® Vibrance™ – antifade mounting media that delivers significant improvements to the immunofluorescence workflow.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced the launch of two new chromatography media for process protein purification: CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin.