Evolution outside the lab

Bacteria and their parasitic phages evolve just as quickly in a natural soil community as they do in a test tube, but other selective pressures can influence the changes

Hannah Waters
Bacteria and the viruses that infect them are widely used as models of coevolution, but are primarily studied in the lab. In a more natural soil environment, these organisms adapt in response to the evolution of the other just as rapidly, but in a slightly different way, according to new research published today in Science.
A scanning electron micrograph of bacteria of the same genus (Pseudonomas) as those used in this experiment
Image: CDC, Janice Haney Carr
"The novelty here is that instead of trying to measure the dynamics of phage versus bacteria in the test tube, they actually did this in more realistic environment," said linkurl:Rotem Sorek,; a microbial genomicist at the Weizmann Institute of Science who was not involved in the research. "And their results challenge the common notion of the 'arms race'" -- a typical model of the coevolution of hosts and their parasites,...
P. Gomez and A. Buckling, "Bacteria-Phage Antagonistic Coevolution in Soil," Science, 332: 106-9, 2011.

American Naturalist

Interested in reading more?

Become a Member of

Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member?