Menu

Mouse Moms’ Behavior Affects Pups’ Genome Structures

Mice who get less attention from their mothers have more copies of a common retrotransposon in the genomes of their hippocampal neurons.

Mar 22, 2018
Abby Olena

A hippocampal cell expresses a mobilized, GFP-tagged LINE-1 element (green). All nuclei are in blue.SALK INSTITUTESome mouse mothers groom, lick, and nurse their babies more than others. In a study published in Science today (March 23), researchers demonstrate that this natural variation in maternal behavior is linked to the structure of pups’ genomes, specifically, the activation of one of the most common jumping genes in the genome, LINE-1.

“What’s fascinating about the paper is the connection between experience, epigenetics, and restructuring of the genome,” says Moshe Szyf, a geneticist at McGill University in Montreal who did not participate in the work. “We usually think about epigenetics changes that don’t change the sequence, but here there was a connection of the maternal care, the change in methylation . . . and then restructuring.”

Coauthor Tracy Bedrosian, who did the work as a postdoc at the Salk Institute and is now a scientist at Ohio-based Neurotechnology Innovations Translator, and her colleagues did not set out to study maternal behavior. Instead, they wanted to explore the effects of maternal stress and environmental enrichment on the retrotransposon LINE-1 (L1), which can copy and paste itself into new locations in the genome, in pups. To manipulate stress levels, they isolated and confined pregnant mice to a small area for a couple hours each day, and for enrichment, mice lived in groups in a large enclosure with toys and running wheels. Bedrosian says that they saw wild variations in L1 copy number between different litters of mice that didn’t seem to relate to their experimental manipulations. Perhaps, they reasoned, maternal behavior was involved.

Pups raised by attentive mothers had fewer copies of L1 in the hippocampal neurons compared to pups whose moms didn’t give as much attention. 

To find out, the researchers observed mouse mothers and recorded how long they groomed, licked, and nursed their pups during defined time windows over a two-week period. Then they isolated heart, hippocampus, and frontal cortex cells from the pups and counted the number of L1 copies in the genomes.

Pups raised by attentive mothers had fewer copies of L1 in the hippocampal neurons compared to pups whose moms didn’t give as much attention. The team found no copy number differences in L1 in the heart or frontal cortex. Furthermore, L1 copy number was similar among the parents, suggesting that L1 copy number variation is not inherited. Maternal care predicted L1 copy number in the pups’ hippocampi, the research showed, even when foster mothers raised the young.

See “Wrangling Retrotransposons

Bedrosian and her colleagues then showed that a transcription factor binding site within the L1 promoter was less methylated in the hippocampi of the pups that received less maternal care. These pups also had correspondingly low expression levels of the gene encoding a DNA methyltransferase. The researchers write in the study that the variability in the methylating enzyme and corresponding L1 promoter methylation, lower levels of which lead to L1 mobilization, are probably only part of the mechanism that connects maternal care to genome structure.

“Licking-grooming is very much tactile stimulation, but nursing you get into more than just physical stimulation,” explains James Curley, a behavioral scientist at the University of Texas at Austin who did not participate in the study. He says that knowing which of the maternal care behaviors are required will help begin to address the broader issues of why these retrotransposon changes happen and what kind of adaptive benefit they confer.

“The million dollar question is to figure out what is the functional relevance of these retrotransposons jumping around in the brain,” agrees Bedrosian. “Is this actually doing anything that affects the animals’ behavior or their fitness or adaptation?”

“From the maternal signal to the actual molecular mechanism is going to be fascinating to work out, and it’s going to take us to multiple candidates beyond retrotransposons,” predicts Michael Meany, a neuroscientist at McGill who was not involved in the work. “The bottom line is that it implies that separation of gene and environment is just a fool’s errand completely. These are clearly interactive forces.”

T.A. Bedrosian et al., “Early life experience drives structural variation of neural genomes in mice,” Science, doi:10.1126/science.aah3378, 2018.

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
Have you played Pokemon Go? Then you've used Augmented Reality (AR) technology! AR technology holds substantial promise and potential for providing a low-cost, easy to use digital platform for the manipulation of virtual 3D objects, including 3D models of biological macromolecules.