Menu

Natural-Born Doctors

Bees, sheep, and chimps are just a few of the animals known to self-medicate. Can they teach us about maintaining our own health?

Oct 23, 2012
Sabrina Richards

Wikimedia, RandyNature can sometimes be brutal, but all animals have evolved strategies to cope. Some of these strategies go well beyond building shelter to weather the storm or forming alliances to provide safety in numbers. Many animals have gone so far as to alter their diets and behavior in ways that protect them from nature’s microscopic threats—parasites.

Chimpanzees held captive often succumb to infection by a parasitic worm, which can lead to lethal intestinal blockages or secondary bacterial infections. But chimps in the wild rarely succumb to such infections. More than 30 years ago, Michael Huffman, who studies evolution of social systems at the University of Kyoto, noticed that wild chimps were treating themselves by ingesting foods with special properties that fight intestinal worm infections. Since that time, scientists have identified numerous other species that partake in similar practices, including macaques and sheep. Now, recognition that various insects also self-medicate is enabling scientists to rigorously examine the phenomenon in the laboratory, with hopes of elucidating applications in animal husbandry and even human medicine.

Rough medicine

Huffman first encountered self-medicating chimps in Africa in the 1980s. He recalls watching a sick chimpanzee suck juice from the bitter leaf plant. A traditional healer, Mohamedi Seifu Kalunde, told Huffman that bitter leaf was used medicinally by the local people, the WaTongwe. The plant didn’t provide nutrients to the chimpanzee, and is rarely used by healthy chimps, but sick animals are commonly observed ingesting the plant, and their symptoms usually resolve soon after. Huffman’s later work identified several compounds in bitter leaf and other medicinal plants used by the chimps with activity against parasitic nematode infections.

Around the same time, researchers also noticed that many chimps perform a behavior dubbed “leaf swallowing”—the deliberate folding and swallowing of leaves, without chewing, usually before nutrient-rich food is consumed. But this behavior didn’t have to do with the plants’ pharmacological activity, Huffman learned. Instead, swallowing the leaves, which were covered in rough hairs, hastened the time it took food to traverse a chimpanzee’s gastrointestinal tract, from 35 hours to just 6. And when Huffman and his colleagues examined samples of chimp poop, they found tiny parasites caught in the leaves’ silica hairs. It appeared that sick chimps were eating the leaves to sweep parasites—including the same nematode targeted by bitter leaf—from their intestines.

Mimicking self-medicaters

Sheep choose tannin-rich food to reduce gut nematode infections. Image credit: Wikimedia, Fir0002Over the past 30 years, scientists have come to realize that chimps are by no means the only animals that alter their diet and behavior to treat their own maladies. Huffman later documented Japanese macaques participating in similar practices, and other scientists watched capuchin monkeys rub themselves with millipedes, which secrete benzoquinones that may help repel mosquitoes. Even some domestic animals are taking their health into their own hands. 

Sheep, for example, are known to regulate their energy and nutritional balances by modifying their food choices. Additionally, they learn to choose food rich in tannins—astringent plant compounds that can kill parasites and relieve infections—when suffering from gut nematode infections.

Researchers investigating the phenomenon of self-medicating animals hope their work can augment animal husbandry practices. “The idea is to provide plants and supplements with natural products like tannins and the opportunity for animals to select [these products] themselves, and reduce their parasitic burden as needed,” Juan Villalba at Utah State University explained. This could help alleviate the specter of drug-resistant pathogens, which often arise as animal managers preemptively dose all animals in their charge.

Zoo animals may also benefit from such self-medicating strategies, Villalba added. When animals eat the typical restricted diets served in most zoo facilities, “one of the problems we start finding is that animals become sick and have a lot of digestive problems,” he noted. “This can be solved when the diet and food alternatives mimic what is going on in natural conditions.”

Self-medicating insects

Self-medication in primates and other mammals is most likely a learned behavior, initially picked up as the animals watch their mothers, then reinforced as they notice the beneficial effects of the various medicinal plants. But self-medication has also been identified in animals with no capability for abstract reasoning and no opportunity to learn from their elders.

Drosophila melanogaster larvae increase their intake of parasite-killing alcohol when infected by a parasitic wasp. Image credit: Wikimedia, Mr.checkerScientists recently discovered, for example, why monarch butterflies are so picky when it comes to choosing the milkweed plants on which to lay their eggs. “The females often taste a plant, reject it, and fly away,” explained Jacobus de Roode of Emory University. It turns out that this choosiness is regulated by the monarch’s health. De Roode found that butterflies infected with the protozoan parasite Ophryocystis elektroscirrha seek out milkweeds containing high levels of cardenolide, a plant steroid that interferes with parasite growth in monarch caterpillars.

Fruit flies also self-medicate, but instead of consuming plants, they turn to alcohol. “It’s one of the really strange things about Drosophila melanogaster—how resistant they are to alcohol,” said Todd Schlenke of Emory University. Parasitic wasps, however, are not: alcohol interferes with their development. Schlenke discovered that parasitic wasps prefer to lay their eggs in larvae fed lower levels of alcohol, and when given a choice between food rich or devoid of alcohol, infected Drosophila larvae ate more alcohol-rich food than uninfected larvae.

Because flies don’t learn from their mothers, the behavior must be innate, said Schlenke, who is currently testing the hypothesis that parasitic infection changes fly brain chemistry, prompting alcohol-seeking behaviors.

In addition to being a fascinating study of animal behavior, identifying what choices animals make to self-medicate may help people as well, argued de Roode. Protozoan parasites, like malaria and toxoplasmosis, are human health concerns, and these may be susceptible to the same compounds monarchs use to target O. elektroscirrha. “There may be some applications down the line,” said de Roode.

Check out images of these and other self-medicating animals in this slide show.

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced that its QXDx AutoDG ddPCR System, which uses Bio-Rad’s Droplet Digital PCR technology, and the QXDx BCR-ABL %IS Kit are the industry’s first digital PCR products to receive U.S. Food and Drug Administration (FDA) clearance. Used together, Bio-Rad’s system and kit can precisely and reproducibly monitor molecular response to treatment in patients with chronic myeloid leukemia (CML).
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.