Sperm From Ovaries

With the deletion of a single gene, female Japanese rice fish can produce sperm. 

Jun 11, 2015
Anna Azvolinsky

Foxl3 -/- medaka ovary with both oocytes (large round ovals) and sperm (smaller dots). Black T-shape is cavity into which matured oocytes are ovulated.TOSHIYA NISHIMURA, MINORU TANAKA, NATIONAL INSTITUTE FOR BASIC BIOLOGY, OKAZAKI, JAPANSomatic cells in the gonads of a developing vertebrate provide germ cells with cues, such as hormones, to develop into sperm or eggs. Studying the ways these cues affect a germ cell’s commitment to become sperm or eggs, Toshiya Nishimura from the laboratory of Minoru Tanaka at the National Institute for Basic Biology in Okazaki, Japan, and colleagues uncovered a single gene that, when missing from female embryos of the Japanese rice fish, or medaka (Oryzias latipes), leads the fish to produce functional sperm soon after hatching. The team’s results, published today (June 11) in Science, suggest that—at least in medaka—spermatogenesis must be suppressed for oogenesis to proceed normally, and that sperm can develop in an ovarian environment.

“This is exciting because it is absolutely unexpected,” said Manfred Schartl, who studies gonadal development at the University of Würzburg in Germany and was not involved in the current study. “That these germ cells have genetically determined sexual fate is new.”

The gene, foxl3, is an ancient lineage duplicate of the foxl2 gene, which is known to be involved in mammalian ovary formation. But the function of foxl3 was previously unclear. “In mammals, foxl2 is well known to antagonize male somatic cell fate and now foxl3, at least in medaka, seems to antagonize male germ cell fate,” said Josephine Bowles, a senior research fellow at the University of Queensland in Australia who studies sex determination in mammals and was not involved in the study.

The team created two medaka mutants that resulted in no detectable expression of the FOXL3 protein. In female homozygous mutant fish, spermatogenesis within the ovary was detectable one week after the fish hatched—three weeks earlier than the typical timing of male puberty, when sperm production starts in these fish. While spermatogenesis within the ovary was somewhat irregular, the resulting sperm were viable. Extracted ovary-produced sperm fertilize half of the eggs of wild-type female fish, and the majority of these fertilized eggs hatched. Other than producing sperm, the mutant fish were overtly female, and the absence of foxl3 did not affect the development of their surrounding somatic gonadal cells. The researchers detected some oocytes within the sperm-producing ovaries of some mutant fish.

Because the sperm could form in the context of female signaling and hormones, the results suggest that male germ cells may not register regulatory signals from female somatic cells, Tanaka told The Scientist in an e-mail. 

“In the environment of a seemingly perfect ovary, the germ cells are largely undergoing the spermatogenesis pathway, suggesting that the only factor normally stopping germ cells in the medaka ovary from adopting the spermatogenesis pathway is foxl3,” said Bowles. “This shows how plastic the sexual fate of these germ cells is in this species.”

According to Schartl, foxl3 appears to allow female germ cells to react to environmental signals while the mutant is shielded from these gonadal somatic cell cues. That the default development track appears to be male is unexpected, added Scharl, as “all of the data from higher vertebrates shows that the default development [track] is female.”

Sex determination mechanisms vary greatly among different fish species. Unlike many other fish, in which temperature-dependent mechanisms determine sex, sex determination in medaka is chromosomally determined, noted Bowles.

It’s unclear whether the results in medaka will have any impact on the study of sex determination in mammals, said Allan Spradling, a developmental biologist at the Carnegie Institution for Science in Baltimore, Maryland, who was not involved in the work.

The team is now studying how foxl3 is regulated, what it regulates, and how this gene is linked to the factors that determine sex in the somatic cells of the gonads in medaka, Tanaka said.

“It’s a surprising study and, technically, wonderful,” said Schartl. “It gives a lot for us [developmental biologists] to think about.”

T. Nishimura et al., “foxl3 is a germ cell-intrinsic factor involved in sperm-egg fate decision in medaka,” Science, doi:10.1126/science.aaa2657, 2015.

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb


Sponsored Product Updates

WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
INTEGRA Biosciences is offering labs the chance to win a VIAFLO 96/384 pipette. Designed to simplify plate replication, plate reformatting or reservoir-to-plate transfers, the VIAFLO 96/384 allows labs without the space or budget for an expensive pipetting robot to increase the speed and throughput of routine tasks.
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!