Menu

Study Bucks Belief that Oxidative Stress Is Bad for Pregnancy

Mouse experiments indicate that, contrary to observations in pregnant women, reactive oxygen species contribute to normal placental development.

May 16, 2017
Jef Akst

Oxidative damage (brown) in placental tissues from mice with a model of preeclampsia M. NEZU ET AL., SCIENCE SIGNALING (2017)As many as 8 percent of pregnant women develop a condition known as preeclampsia, a spike in blood pressure characterized by the reduced formation of placental blood vessels. Previous research has suggested that reactive oxygen species (ROS) may play a role in triggering the untreatable condition, which causes up to 15 percent of maternal deaths and 5 percent of stillbirths globally. A handful of clinical trials have even attempted to reduce the risk of preeclampsia by targeting ROS accumulation, but treated women often had worse outcomes. Now, a study in mice published today (May 16) in Science Signaling provides a potential clue as to why: ROS may actually help protect against preeclampsia by increasing blood vessel generation in the placenta.

The results “were exactly opposite” of what the researchers had expected, coauthor Norio Suzuki, a molecular biologist at the Tohoku University Graduate School of Medicine in Japan, told The Scientist in an email. Earlier work had shown that in preeclampsia patients, ROS pile up in their placentas. “However, data from this study indicated that ROS accumulation induces placental angiogenesis in a preeclampsia mouse model and improves maternal and fetal outcomes,” he said.

Using genetically modified mice, Suzuki and his colleagues recently discovered that the Keap1-Nrf2 pathway, which induces the expression of detoxification and antioxidant enzymes, “is essential for protection of organs from damages in many types of diseases,” he explained. This led the researchers to wonder whether the system might also be involved in preeclampsia.

Sure enough, inactivating the Keap1-Nrf2 system in mice with induced preeclampsia led to higher levels of ROS, but unexpectedly, these animals had improved blood vessel formation. This resulted in reduced symptoms and risk of death for both the mouse mothers and their fetuses. Conversely, activating this pathway caused increased maternal mortality and higher rates of miscarriage.

While the molecular mechanisms by which ROS regulate placental angiogenesis remain unknown, Suzuki noted, the results suggest that oxidative stress may be important to a healthy pregnancy, and this antioxidant system may provide “plausible candidates for preeclampsia treatment in future.”

Guillermina Girardi, the chair in women’s health at King’s College London, raised concerns about the mouse model Suzuki and his colleagues used, noting that it’s unclear if the rodents have abnormal invasion of cells called trophoblasts into the maternal uterus. This invasion is thought to be the primary cause of the hypertension that characterizes preeclampsia.

Moreover, she added, the authors observed thickening of the heart’s muscle wall following the development of hypertension—something that “clearly does not happen in other mouse models of preeclampsia characterized by abnormal trophoblast invasion,” she said. Thus, “the model fails to reproduce the sequence of events that occur in women during pregnancies affected by preeclampsia.”

Suzuki acknowledges the limitations of the mouse model he and his colleagues used, and emphasizes the importance of testing the role of ROS in other mouse models of preeclampsia. “Researches using animal models always have limitations, and it is impossible to explain everything about animal models in a paper,” he said. “We are thinking that effects of ROS on improvements in preeclampsia through inducing placental angiogenesis could not be found without our mouse model.”

M. Nezu, et al., “Nrf2 inactivation enhances placental angiogenesis in a preeclampsia mouse model and improves maternal and fetal outcomes,” Science Signaling, doi:10.1126/scisignal.aal4501, 2017.

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
Have you played Pokemon Go? Then you've used Augmented Reality (AR) technology! AR technology holds substantial promise and potential for providing a low-cost, easy to use digital platform for the manipulation of virtual 3D objects, including 3D models of biological macromolecules.