Top 5 papers of 2010

The most highly ranked articles in all of biology, according to the Faculty of 1000

Megan Scudellari
Dec 8, 2010
This was a year of headline science news: the first cell with a linkurl:synthetic genome,; a new linkurl:human-Neanderthal ancestor; and, recently, alien life. Oh, wait...that was just linkurl:bacteria growing on arsenic.; linkurl:Never mind.;
But, according to scientists, this year's most important papers were not those that made the front page of international newspapers, but the quiet and persistent investigations of the molecular foundations of life. From the long-awaited structure of a bacterial enzyme to how Salmonella grows in the gut, presented here in ascending order are the five most important papers in biology of 2010, as reviewed and ranked by members of the Faculty of 1000.linkurl:5. Mechanotransduction proteins found; paper:;,f1000m B. Coste, et al., "Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels," Science, 330:55-60, 2010.A new family of proteins, characterized in a mouse cell line, shines new light on the previously mysterious molecular basis of mechanosensation in mammals. Called Piezos, these proteins have been identified as a critical molecular component in mechanically activated ion channels, which make possible several sensations, such as hearing, touch and pain. linkurl:4. Inflammation amplification; paper:;,f1000m E. Boilard, et al., "Platelets amplify inflammation in arthritis via collagen-dependent microparticle production," Science, 327:580-83, 2010.Researchers identify platelet "microparticles" -- tiny vesicles that bud from the membranes of activated platelets -- in the fluid of inflamed joints, which rarely contain blood. Importantly, depleting the microparticles using an antibody seemed to cure arthritis in mice. The discovery, published in a January issue of Science, demonstrates the previously unappreciated role of platelets in inflammatory arthritis.Read the full story linkurl:here.; Complex I enzyme revealed; linkurl:The paper:;,f1000m R.G. Efremov, et al., "The architecture of respiratory complex I," Nature, 465:441-5, 2010.The long-awaited structure of a bacterial complex I enzyme -- first in line in the energy-producing respiratory chain -- reveals important mechanics of this ubiquitous protein. Specifically, the structure shows how the enzyme hustles electrons and protons across membranes. The structure, published by Nature in May, is one of the largest protein membrane complexes ever solved.linkurl:2. How cilia talk; paper:;,f1000m Q. Hu, et al., "A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution," Science, 329:436-39, 2010.Primary (nonmotile) cilia -- sensory organelles in eukaryotic cells that act as antennae -- rely on membrane proteins to send and receive extracellular signals. New findings, published in the July issue of Science, show how cilia retain those membrane proteins -- a barrier at the base of cilia made up of proteins called septins. Septins, originally identified as cell division mutants in yeast, localize at the base of the cilium where they maintain a barrier to control the localization of membrane proteins. The discovery solves the long-standing mystery of how signaling proteins are retained in the primary cilium. One of the paper's corresponding authors, Elias Spiliotis, is this month's linkurl:Scientist to Watch.; You can read more about septins, and how they may also help protect yeast from the effects of aging, in our linkurl:October cover story by Yves Barral.; Immune response feeds parasite; paper:;,f1000m S.E. Winter, et al., "Gut inflammation provides a respiratory electron acceptor for Salmonella," Nature, 467:426-9, 2010.Salmonella is able to out-compete resident gut microbes by deriving energy from the immune response that is supposed to combat the pathogen, according to a study published in September in Nature. Inflammation in a mouse gut generates a sulfur-based molecule called tetrathionate, which Salmonella uses during respiration for enhanced growth.Read the full news story linkurl:here.; is a snapshot of the highest ranked biology articles from the previous year on Faculty of 1000, as calculated on December 2, 2010. Faculty Members evaluate and rate the most important papers in their field. To see the latest rankings, search the database, and read daily evaluations, visit linkurl:;
**__Related stories:__***linkurl:Top 7 papers in cell biology;
[6th December 2010] *linkurl:Top 7 hidden jewels;
[13th September 2010] *linkurl:The five hottest biology papers of 2009;
[17th December 2009]