Menu

Zooming In on an Antidepressant Target

Structural studies reveal how SSRI drugs bind to the human serotonin transporter.

Apr 6, 2016
Ruth Williams


WIKIMEDIA, TOKINOResearchers at the Vollum Institute in Portland, Oregon, have resolved the crystal structures of the human serotonin transporter (SERT) bound to two different antidepressant drugs. The structures show where the drugs bind, how they inhibit transporter function, and offer insights for the design and development of new psychiatric pharmaceuticals.

“There are no other human transporters in this family that have been crystallized and where we know the structure, so [the paper] is a milestone in that sense,” said pharmacologist Gary Rudnick of Yale University who was not involved in the study. “The structure can be used to understand details about the way the protein works, the way it binds ligands [and] for drug development,” he added.

Serotonin is a neurotransmitter that influences neurological systems such as mood, sleep, cognition, and hunger. Selective serotonin reuptake inhibitors (SSRIs) are drugs that prolong the presence, and thus activity, of serotonin in neural synapses, and are used in the treatment of depression, anxiety and other related disorders. They work by binding and inactivating SERT, which normally transports serotonin from synapses into presynaptic neurons, but exactly where and how SSRIs bind has not been fully determined.

SERT is a member of a large family of neurotransmitter sodium symporters (NSS) that includes the transporters for dopamine and norepinephrine. These NSS proteins are integral membrane factors, complicating structural analysis by X-ray crystallography. “Membrane proteins tend to be happiest in a membrane bilayer,” said Eric Gouaux of the Vollum Institute, who led the study, “but it turns out we can’t study them very well in a membrane, so we have to extract them.” The problem is, without the support of the surrounding membrane the proteins become highly unstable. “The human serotonin transporter was particularly finicky,” Gouaux said.

To tackle the instability problem, the researchers systematically introduced mutations in SERT until they found ones that stabilized the free protein yet maintained its function. They also found that associating SERT with an SSRI helped maintain the protein’s structure. “[The drugs] really lock the molecule into a particular shape,” said Gouaux, “so it’s easier to make crystals.”

The X-ray structures revealed that a single molecule of the SSRI paroxetine bound within a cavity that reached deep into the transporter. By contrast, two molecules of the SSRI (S)-citalopram were found to bind SERT—one in the same spot as paroxetine (the presumed binding site for serotonin), and another in a nearby cleft within the same cavity.

The discovery of the second binding site for (S)-citalopram confirms previous evidence for an allosteric site. Studies had shown that high concentrations of the drug could prolong its binding to SERT. In effect, “it suggests that the drug itself can enhance its own function,” said neuroscientist and pharmacologist Ulrik Gether of the University of Copenhagen who also did not participate in the study.

This allosteric site provides an additional possible drug target, explained Gether.  For example, “you could design molecules with particularly high affinity for that site that could enhance the effects of other drugs,” he said. Overall, the crystal structures could also inform improvements to existing SSRIs, perhaps making them more specific and effective.

Both drugs fixed SERT in an “outward-open” conformation, meaning that, were the transporter in its normal membrane location, it would be prevented from opening into the cytoplasm—necessary for transporting serotonin into the cell. The structures thus explain how the drugs work, but Gouaux and colleagues would also like to determine how serotonin, itself, is transported.

Determining the structure of SERT bound to serotonin, however, “is a tougher problem,” said Gouaux. “When serotonin is bound, the transporter is doing its natural thing of moving back and forth and that makes visualization challenging,” he explained. “We have to learn how to trap particular states of the transporter so that we can essentially build up a movie of this process [from] structural snapshots.”

J.A. Coleman et al., “X-ray structures and mechanism of the human serotonin transporter,” Nature, doi:10.1038/nature17629, 2016.

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

Enabling Genomics-Guided Precision Medicine

Enabling Genomics-Guided Precision Medicine

Download this eBook from Qiagen to learn more about the promise of precision medicine and how QCITM Interpret can help deliver better care with better knowledge.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced the launch of two new chromatography media for process protein purification: CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin.

Immunophenotypic Analysis of Human Blood Leukocyte Subsets

Immunophenotypic Analysis of Human Blood Leukocyte Subsets

Download this application note from ACEA Biosciences, Inc., to find out how to perform an immunophenotypic analysis of a human blood sample utilizing 13 fluorescent markers using a compact benchtop flow cytometer equipped with 3 lasers!