Exercise’s Benefits to Dementia Can Be Made Chemically

Boosting both neurogenesis and a brain-derived growth factor can mimic the cognitive benefits of exercise in a mouse mode of Alzheimer’s disease.

Written byRuth Williams
| 3 min read
Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Mice that model a severe form of Alzheimer’s disease tend to exhibit improved memory after exercise-induced neuron production, according to a report in Science today (September 6). Similar improvements are also possible with an exercise work-around, by giving the animals a treatment to ramp-up neurogenesis together with a dose of brain-derived neurotrophic factor (BDNF).

“This paper was really exciting. . . . It is a proof of principle, in an animal model, that you can replace exercise by a bottled therapy,” says Alzheimer’s disease researcher Tara Spires-Jones of the University of Edinburgh who wrote a commentary about the paper, but was not involved in the research. However, “we’re a pretty long way from translating this study from mice into humans,” she adds.

“This [work] continues to emphasize the importance of physical exercise in sustaining the brain and fighting off brain degeneration”

Alzheimer’s disease is the most common form of age-related ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Image of a man in a laboratory looking frustrated with his failed experiment.
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies