Courtesy of Peggy Greb, ARS Photo Library

Picture an imperfect hall of mirrors, with gene sequences reflecting wildly: That's the human genome. The duplications that riddle the genome range greatly in size, clustered in some areas yet absent in others, residing in gene jungles as well as within vast expanses of seemingly genetic gibberish. And in their organization lie clues to genome origins. "We've known for some time that duplications are the primary force for genes and genomes to evolve over time," says Evan Eichler, director of the bioinformatics core facility at the Center for Computational Genomics, Case Western Reserve University, Cleveland.

For three decades, based largely on extrapolations from known gene families in humans, researchers have hypothesized two complete genome doublings--technically, polyploidization--modified by gene loss, chromosome rearrangements, and additional limited duplications. But that view is changing as more complete evidence from genomics reveals a larger role for recent small-scale...

Interested in reading more?

Become a Member of

Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member?