The Neurobiology of Rehabilitation

Courtesy of Eric D. Laywell SPHERES OF PROMISE These neurospheres, clusters of cells in culture derived from the CNS of mice, are stained with antibodies against a neuronal protein (red), and a astrocyte protein (green). They have a nuclear counterstain (blue). The brain and spinal cord were once considered mitotic dead ends, a division of neurons dwindling with toddlerhood, with memory and learning the consequence of synaptic plasticity, not new neurons. But the discovery of neural stem

Ricki Lewis
Jun 29, 2003
Courtesy of Eric D. Laywell
 SPHERES OF PROMISE These neurospheres, clusters of cells in culture derived from the CNS of mice, are stained with antibodies against a neuronal protein (red), and a astrocyte protein (green). They have a nuclear counterstain (blue).

The brain and spinal cord were once considered mitotic dead ends, a division of neurons dwindling with toddlerhood, with memory and learning the consequence of synaptic plasticity, not new neurons. But the discovery of neural stem cells (NSCs) in the human adult central nervous system (CNS) has raised the possibility of reawakening neurogenesis in the adult to treat neurodegenerative diseases, such as Parkinson, Alzheimer, and Huntington diseases, and spinal cord injuries.

"Does the human CNS self-repair? Of course it does! We live 90 years. It is unreasonable to think that there is no turnover, like in every other organ," says Fred Gage, of Salk Institute for Biological Studies, La...

Interested in reading more?

Become a Member of

Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member?