Fighting Microbes with Microbes

Doctors turn to good microbes to fight disease. Will the same strategy work with crops?

| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

CAPSULE © JORG GREUEL/GETTY IMAGES; BACTERIA © JEZPERKLAUZEN/ISTOCKPHOTO.COMLike humans, with their complement of microbes that aid in everything from immune responses to nutrition, plants rely on a vast array of bacteria and fungi for health and defense. Over the last decade, research has revealed many new functional aspects of the crosstalk between human-associated microbes and human cells, but plant biologists are only beginning to scratch the surface of the often surprising ways that soil microbiota impact plants, from underground fungus-wired alarm systems to soil bacteria that can trigger defensive plant behavior or even act as a sort of vaccine. But despite these benefits, microbes are still primarily thought of as harbingers of disease.

“Since the discovery of antibiotics, medical research has been dominated by a ‘bazooka mentality,’” and so has agricultural research, says Alexandre Jousset, a plant scientist at the Georg-August University in Göttingen, Germany. “Traditionally, microbes have been viewed negatively, and focus has been placed on eradication.” Today, scientists and some medical doctors are becoming increasingly aware of their utility, and botanical researchers have also begun to debate whether the same may be true of plants.

While the Human Microbiome Project has discovered that some 10,000 species of microorganisms live in and on the human body, outnumbering our own cells by ten to one, plant scientists have found that any given soil sample contains more than 30,000 taxonomic varieties of microbes. Soil microflora not only provide nutrients ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio