First Data from Anti-Aging Gene Therapy

A biotech company reports that an experimental treatment elongated its CEO’s telomeres.

Written byKerry Grens
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

FLICKR, HEY PAUL STUDIOSLast year, Elizabeth Parrish, the CEO of Seattle-based biotech firm BioViva, hopped a plane to Colombia, where she received multiple injections of two experimental gene therapies her company had developed. One is intended to lengthen the caps of her chromosomes (called telomeres) while the other aims to increase muscle mass. The idea is that together these treatments would “compress mortality,” Parrish told The Scientist, by staving off the diseases of aging—enabling people to live healthier, longer.

On its website last week (April 22), BioViva reported the first results of Parrish’s treatment: the telomeres of her leukocytes grew longer, from 6.71 kb in September 2015 to 7.33 kb in March 2016. The question now is: What does that mean?

The company announced Parrish’s response as success against human aging, having “reversed 20 years of normal telomere shortening.”

Over the phone, Parrish was more measured in discussing the implications of the finding, which has not yet undergone peer review. “The best-case scenario would be that we added 20 years of health onto the leukocytes, and the immune system might be more productive and catch more of the bad guys,” she said. “But we have to wait and find out. The proof will be ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies