First Data from Anti-Aging Gene Therapy

A biotech company reports that an experimental treatment elongated its CEO’s telomeres.

Written byKerry Grens
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

FLICKR, HEY PAUL STUDIOSLast year, Elizabeth Parrish, the CEO of Seattle-based biotech firm BioViva, hopped a plane to Colombia, where she received multiple injections of two experimental gene therapies her company had developed. One is intended to lengthen the caps of her chromosomes (called telomeres) while the other aims to increase muscle mass. The idea is that together these treatments would “compress mortality,” Parrish told The Scientist, by staving off the diseases of aging—enabling people to live healthier, longer.

On its website last week (April 22), BioViva reported the first results of Parrish’s treatment: the telomeres of her leukocytes grew longer, from 6.71 kb in September 2015 to 7.33 kb in March 2016. The question now is: What does that mean?

The company announced Parrish’s response as success against human aging, having “reversed 20 years of normal telomere shortening.”

Over the phone, Parrish was more measured in discussing the implications of the finding, which has not yet undergone peer review. “The best-case scenario would be that we added 20 years of health onto the leukocytes, and the immune system might be more productive and catch more of the bad guys,” she said. “But we have to wait and find out. The proof will be ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH