Fixing the Flaws in Animal Research

Many preclinical studies carried out in vivo are poorly designed and generate irreproducible data, but efforts to address the problem are on the rise.

Written byDiana Kwon
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

ABOVE: © ISTOCK.COM, JXFZSY

A few years ago, officials at Switzerland’s Federal Food Safety and Veterinary Office approached Hanno Würbel, the head of the animal welfare division at the University of Bern, with the task of examining the quality of experimental design in the country’s animal research. Growing public awareness of the reproducibility crisis in science—which has emerged as researchers discover that a large proportion of scientific results cannot be replicated in subsequent experiments—had put pressure on the government authority to examine this issue, Würbel says. “They wanted to know, what is the situation in Switzerland . . . and is there anything that we need to improve?”

To address this question, Würbel and his colleagues examined scientific protocols in 1,277 applications for licenses to conduct animal research that were submitted to and approved by the Swiss Food Safety and Veterinary Office (FSVO). Their analysis, published in PLOS Biology in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile

Published In

September 2019

Our Inner Neanderthal

Ancient secrets in the human genome

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH