Gypsy at the periphery

Chromatin insulators protect genomic domains from chromosomal position effects and from enhancer activation, but the mechanisms by which the insulators function are largely unknown. In the November Molecular Cell Gerasimova et al. provide insights by analyzing the behavior of the gypsy insulator in diploid interphasic cells from Drosophila imaginal disks (Mol Cell 2000, 6:1025-1035). They employed three-dimensional constructions of immunofluorescence microscopy images to investigate the nuclear

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Chromatin insulators protect genomic domains from chromosomal position effects and from enhancer activation, but the mechanisms by which the insulators function are largely unknown. In the November Molecular Cell Gerasimova et al. provide insights by analyzing the behavior of the gypsy insulator in diploid interphasic cells from Drosophila imaginal disks (Mol Cell 2000, 6:1025-1035). They employed three-dimensional constructions of immunofluorescence microscopy images to investigate the nuclear localization of the gypsy element and its associated proteins su(Hw) and mod(mdg4). The insulator proteins are localized within about 21 discrete 'insulator bodies', which are found at the nuclear periphery. The gypsy sequence was able to direct the clustering of DNA to these peripheral sites. The functional significance of the nuclear aggregates was investigated by observing the effect of heat-shock treatment. Heat shock induced disruption of gypsy insulator bodies, changes in nuclear DNA distribution and increases in global gene expression. These observations suggest that ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Jonathan Weitzman

    This person does not yet have a bio.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit