ADVERTISEMENT
ADVERTISEMENT

Analytical Chemistry

R.J. Cotter, "Time-of-Flight mass-spectrometry for the structural analysis of biological molecules," Analytical Chemistry, 64:1027-39, 1992. Robert J. Cotter (Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore): "As mass spectrometry continues to play an increasing role in the solution of structural biology problems, the time-of-flight (TOF) mass analyzer is receiving particul

The Scientist Staff

R.J. Cotter, "Time-of-Flight mass-spectrometry for the structural analysis of biological molecules," Analytical Chemistry, 64:1027-39, 1992.

Robert J. Cotter (Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore): "As mass spectrometry continues to play an increasing role in the solution of structural biology problems, the time-of-flight (TOF) mass analyzer is receiving particular attention. The method is highly sensitive and theoretically has an unlimited mass range. Scientists are able to use TOF mass spectrometry, coupled with ionization methods such as plasma desorption (PD) and matrix-assisted laser desorption/ ionization (MALDI), for rapid measuring of protein molecular weight; mass-mapping of enzymatic digests; and locating disulfide bonds, post- translational cleavages, and phosphorylation and glycosylation sites in proteins. Moreover, strategies that combine molecular weight measurements with enzyme reactions- -such as the `ladder' sequencing of peptides using amino and carboxypeptidases--have considerable appeal for those data confounded by the complex fragmentation patterns that...

Interested in reading more?

Become a Member of

Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member?
ADVERTISEMENT