ADVERTISEMENT
ADVERTISEMENT

Put the Blame on Methylation

Data derived from the Science Watch/Hot Papers database and the Web of Science (ISI, Philadelphia) show that Hot Papers are cited 50 to 100 times more often than the average paper of the same type and age. D.G. Burbee et al., "Epigenetic inactivation of RASSF1A in lung and breast cancer and malignant phenotype suppression," J Natl Cancer Inst, 93:691-9, May 2, 2001. (Cited in 105 papers) M. Esteller et al., "A gene hypermethylation profile of human cancer," Cancer Res, 61:3225-9, April 15, 200

Jim Kling
Data derived from the Science Watch/Hot Papers database and the Web of Science (ISI, Philadelphia) show that Hot Papers are cited 50 to 100 times more often than the average paper of the same type and age.

D.G. Burbee et al., "Epigenetic inactivation of RASSF1A in lung and breast cancer and malignant phenotype suppression," J Natl Cancer Inst, 93:691-9, May 2, 2001. (Cited in 105 papers)

M. Esteller et al., "A gene hypermethylation profile of human cancer," Cancer Res, 61:3225-9, April 15, 2001. (Cited in 164 papers)
 

When good genes go bad and cancer arises, mutation normally gets the blame. But, newer evidence is challenging that one-dimensional view. Epigenetic modifications, such as DNA methylation, can also shut down tumor suppressor genes by causing changes in the chromosomal structure surrounding the gene as noted in this issue's Hot Papers.1,2

John Minna, director of the Hamon Center for...

Interested in reading more?

Magaizne Cover

Become a Member of

Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member?
ADVERTISEMENT