How a Memory Is Made

Transcription factor levels dictate which neurons in a network store a memory.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

In the right hemisphere of a mouse brain stained with DAPI (blue), some neurons in the insular cortex express GFP-CREB (green).YOSHITAKE SANO

When a nasty taste makes the stomach turn, neurons in the brain’s insular cortex fire up to form a memory of the foul flavor. But only a subset of cells are involved in storing that memory. In mice learning to dislike saltwater, new memories favor neurons with high levels of the cyclic-AMP-response-element-binding protein (CREB), according to a study published today (November 13) in Current Biology.

A team of researchers at the University of California, Los Angeles (UCLA) examined the development of a conditioned taste aversion response in mice that overexpressed CREB in a subset of insular cortex neurons. Precise inactivation of the CREB-expressing neurons revealed that these cells were required for the mice to remember the bad-taste experience. CREB, which activates the transcription of genes ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Molly Sharlach

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio