Human Proteome Mapped Again

Researchers complete another interactive protein atlas, boosting the number of publicly available maps of human protein expression levels.

Written byAnna Azvolinsky
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Ovary stained for MUM1L1 (left), testes stained for unknown protein encoded by C2ORF57 (right)HUMAN PROTEIN ATLAS Researchers in Sweden have completed an exhaustive map of protein and RNA expression across 32 human tissues and organs. Mathias Uhlén of the Royal Institute of Technology in Stockholm and his colleagues report their findings today (January 22) in Science. The Human Protein Atlas joins the Human Proteome Map, among other publicly available proteomics resources.

The team generated this latest catalog of the human proteome using more than 24,000 polyclonal antibodies to visualize the locations of each of 16,975 unique proteins, corresponding to 85 percent of all genes in the genome. The result is more than 13 million antibody-stained immunohistochemistry images. To add a quantitative layer, the team supplemented its spatial protein mapping with quantitative RNA-sequencing data for 32 tissues types. Users of the Human Protein Atlas can search for and download information for a protein or gene or a subset of the proteomic data.

“The big strength of this [database] is the ease of navigation,” Anne-Claude Gingras, a proteomics researcher at the Lunenfeld-Tanenbaum Research Institute in Toronto, Canada, who was not involved in the work, wrote in an e-mail ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel