Menu

Image of the Day: Drop Set

Liquid-like droplets containing DNA and proteins provide a model for researchers to study membraneless organization in the cell.

Nov 13, 2018
Catherine Offord

ABOVE: Fluorescence microscopy image of liquid-like droplets (yellow) containing DNA (dark spots) along with poly-L-lysine and adenosine triphosphate
IBS

Cells often organize the molecules they contain by packaging them into membrane-bound compartments. But cells can also achieve interior organization using a process known as phase separation, where distinct sets of molecules end up contained in different, immiscible liquids.

To study how these membraneless organelles arise, researchers have created tiny, liquid-like droplets using DNA and poly-L-lysine, a protein made up entirely of the amino acid lysine. They found that the stability of droplets was highly dependent on the sequence of the DNA molecules they contained. For example, sequences containing only thymine (T) bases formed droplets more readily than DNA made up entirely of adenine (A).

The result reveals one way that cells might be able to fine tune phase separation and therefore intracellular organization, study coauthor Anisha Shakya of the Institute for Basic Science’s Center for Soft and Living Matter in Korea says in a statement. “The fascinating part is to imagine how cells may take advantage of this sequence-dependent information to guide and regulate liquid-liquid phase separation in vivo.”

A. Shakya, J.T. King, “DNA local-flexibility-dependent assembly of phase-separated liquid droplets,” Biophys J, doi:10.1016/j.bpj.2018.09.022, 2018.

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.
Corning Introduces New 1536-well Spheroid Microplate
Corning Introduces New 1536-well Spheroid Microplate
High-throughput spheroid microplate benefits cancer research, drug screening