Menu

Image of the Day: Switch Gears

A gene responsible for the free-moving, primitive nature of fetal cells is expressed in some breast cancer cells in mice and humans.

Sep 10, 2018
Sukanya Charuchandra

ABOVE: Left panel: Considerable numbers of invasive cancer cells with Sox10 (red) in them can be found outside of mouse tumors in vivo (green cells, outlined). Right panel: The invasive cells are proximal to blood vessels (white).
SALK INSTITUTE/SANFORD CONSORTIUM FOR REGENERATIVE MEDICINE

Agene known to be active in fetal cells is also expressed in aggressive forms of breast cancer, pointing to a possible explanation for cancer cells’ ability to regain the potential to evolve into other types and metastasize to different regions in the body. The findings were published last month (August 30) in Cancer Cell.

The gene in question, Sox10, controls several processes, including cell development and movement, as a transcription factor.

The researchers noticed that breast cancer cells from humans and mice with abundant Sox10 reverted to undifferentiated variants that turned invasive and freely migrated. In a mouse experiment, they observed that disrupting Sox10 function stopped cancer formation in breast cells that had been primed to former tumors. 

C. Dravis et al., “Epigenetic and transcriptomic profiling of mammary gland development and tumor models disclose regulators of cell state plasticity,” Cancer Cell, doi:10.1016/j.ccell.2018.08.001, 2018.

Clarification (September 10): Upon request, we changed the credit for the image from Salk Institute to Salk Institute/Sanford Consortium for Regenerative Medicine. 

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.
Corning Introduces New 1536-well Spheroid Microplate
Corning Introduces New 1536-well Spheroid Microplate
High-throughput spheroid microplate benefits cancer research, drug screening