Menu

Image of the Day: Gene Expression

A new algorithm scrutinizes the most hard-to-read segments of the genome.

Apr 9, 2018
The Scientist Staff, The Scientist Staff

Gradually eliminating low-affinity binding sites identified by the new algorithm results in a gradual reduction (from left to right) of gene expression (white) in fruit fly larvae.MANN LAB/COLUMBIA’S ZUCKERMAN INSTITUTE

Columbia University biochemists reported last week (April 2) in PNAS that they developed a computer algorithm that quantifies the relationship between transcription factors and the DNA they regulate. The algorithm can also accurately predict the effect of mutations on gene expression even for very low-affinity binding sites—regions in the genome where transcription factors bind to DNA, but do so in hard-to-detect ways.

“The genomes of even simple organisms such as the fruit fly contain 120 million letters worth of DNA, much of which has yet to be decoded because the cues its provides have been too subtle for existing tools to pick up,” says coauthor Richard Mann, a biochemist at Columbia University in a statement. “But our new algorithm lets us sweep through these millions of lines of genetic code and pick up even the faintest signals, resulting in a much more complete picture what DNA encodes.”

C. Rastogi et al., “Accurate and sensitive quantification of protein-DNA binding affinity,” PNAS, doi:10.1073/pnas.1714376115, 2018.

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
Have you played Pokemon Go? Then you've used Augmented Reality (AR) technology! AR technology holds substantial promise and potential for providing a low-cost, easy to use digital platform for the manipulation of virtual 3D objects, including 3D models of biological macromolecules.