Menu

Infographic: How Muscles Age

Numerous cellular changes underlie the decline of muscle mass and strength in the elderly.

Sep 1, 2018
Gillian Butler-Browne, Vincent Mouly, Anne Bigot, Capucine Trollet

ABOVE: © REGENTS OF THE UNIVERSITY OF MICHIGAN 

Sarcopenia, the loss of muscle mass with age, can start as early as one’s 30s, and affects a large proportion of the elderly. Fortunately, exercise can combat muscle aging, likely by reversing many of the age-related physiological changes at the root of this decline. 

Muscle stem cells: Muscle stem cells, or satellite cells, decrease in number as we age. In elderly-human cells DNA methylation suppresses the expression of some genes, including sprouty 1, an important regulator of satellite cell self-renewal.

Mitochondria: Muscles develop abnormalities in mitochondrial morphology, number, and function with age.

Autophagy: Old muscles undergo lower levels of autophagy. Combined with lower protein production, this can result in an imbalance of proteins linked to muscle aging.

Blood-borne factors: Signaling factors known as myokines can be released into the blood directly or through excreted vesicles, and travel through the circulatory system to coordinate muscle physiology and repair. For example, apelin, which decreases with age, boosts the formation of new mitochondria, stimulates protein synthesis and autophagy, and supports the function of muscle stem cells.

Young Muscle

© scott leighton


Old Muscle

© scott leighton





Exercise: A sedentary lifestyle can induce molecular processes of muscle aging, such as decreases in the efficiency and number of mitochondria. Conversely, exercise reverses a gene expression profile consistent with mitochondrial dysfunction and restores levels of mitochondrial proteins. Exercise also increases autophagy levels and restores levels of myokines involved in muscle function.

Read the full story.

Correction (September 17): The original version of this story showed an image of smooth muscle. This has been replaced with one of skeletal muscle to more accurately reflect the content of the article. The Scientist regrets the error.  

March 2019

Going Under

Dissecting the effects of anesthetics

Marketplace

Sponsored Product Updates

The Complex Biology of Macrophages: Origins, Functions, and Activation States
The Complex Biology of Macrophages: Origins, Functions, and Activation States
Download this poster from R&D Systems for a detailed overview of macrophage markers, functions, development, specialization, and activation!
A Guide to Measuring Drug-Target Residence Times with Biochemical Assays
A Guide to Measuring Drug-Target Residence Times with Biochemical Assays
Download this guide from BellBrook Labs to learn about how to use Transcreener® biochemical assays to measure drug-target residence times, complete with examples and case studies!
Beckman Coulter Life Sciences To Launch New Product Via Live Stream Event
Beckman Coulter Life Sciences To Launch New Product Via Live Stream Event
After visiting labs around the world to identify ways to advance its industry-leading cell counting technology, Beckman Coulter Life Sciences will host a live streaming event on March 26 at 10 a.m. EDT / 7 a.m. PDT to announce its latest product innovation.  
Cybrexa Therapeutics to Present First Data and Unveil Details for its alphalex™-PARP Inhibitor Lead Candidate CBX-11 at AACR Annual Meeting 2019
Cybrexa Therapeutics to Present First Data and Unveil Details for its alphalex™-PARP Inhibitor Lead Candidate CBX-11 at AACR Annual Meeting 2019
Cybrexa Therapeutics, a biotechnology company developing a new class of cancer therapeutics through its alphalex™ tumor targeting platform, today announced that Vishwas Paralkar, PhD, Chief Scientific Officer of Cybrexa, will present the first set of preclinical data supporting its alphalex™-PARP inhibitor lead candidate, CBX-11, at the American Association for Cancer Research (AACR) Annual Meeting 2019, being held March 29 – April 3 in Atlanta, Georgia. At the meeting, the Company will unveil the FDA-approved poly ADP-ribose polymerase (PARP) inhibitor conjugated in CBX-11.