Menu

Infographic: Treating Duchenne Muscular Dystrophy with CRISPR

The disease is caused by mutations in a single gene. Can gene editing fix the problem?

Aug 30, 2018
Sandeep Ravindran

Dystrophin is part of a protein complex linking the cytoskeleton of muscle fibers to the surrounding connective tissue (basal lamina). It’s a long protein with numerous redundant coils (purple balls), and acts like a shock absorber during contraction. Without functional dystrophin to support muscle strength and stability, muscle fibers are easily damaged.

© steve graepel

The genetics of Duchenne

Duchenne muscular dystrophy results from mutations in the DMD gene that encodes the dystrophin protein. There are many types of mutations that can cause the disease; each disrupts the reading frame such that translation terminates prematurely, producing no functional dystrophin protein. DMD mutations are particularly common in “hotspot” areas of the gene (exons 45–55 and 2–10).

Wildtype DMD gene

Duchenne-causing mutations

© STEVE GRAEPEL



Because the genetic underpinnings of Duchenne are known, researchers can devise gene-editing fixes to the problem. Several potential treatments are now being tested in preclinical and clinical studies. In some cases, they aim to correct the mutations in the DMD gene; other times, the goal is simply to restore a shorter but still partially functional dystrophin protein.

Example: A mutation in exon 44 disrupts the reading frame and causes translation to stop prematurely, leading to a dysfunctional protein.

Strategies for fixing the problem

© steve graepel

Read the full story.

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
Have you played Pokemon Go? Then you've used Augmented Reality (AR) technology! AR technology holds substantial promise and potential for providing a low-cost, easy to use digital platform for the manipulation of virtual 3D objects, including 3D models of biological macromolecules.