ADVERTISEMENT
ADVERTISEMENT
literature infographic the scientist DNA replication repair
the literature infographic dna repairing

Infographic: How Stray DNA Can Land in Double-Strand Breaks

A study on yeast illuminates how insertions may occur.

katya katarina zimmer
Katarina Zimmer

After a year teaching an algorithm to differentiate between the echolocation calls of different bat species, Katarina decided she was simply too greedy to focus on one field. Following an internship with The Scientist in 2017, she has been happily freelancing for a number of publications, covering everything from climate change to oncology.

View full profile.


Learn about our editorial policies.

When a yeast cell is engineered to lack the enzyme Dna2, double-strand breaks in its DNA (1), collect stray sequences from all over the genome. Authors of a new paper suggest these insertions arise because Dna2 normally degrades excess DNA created during replication, such as so-called 5’ flaps (2a). Another possibility is that the rogue DNA is shed from dying cells (2b), although it is unclear whether Dna2 could be involved in that process. The excess bits can be integrated into breaks via nonhomologous end joining, in which repair enzymes weld the ends of severed DNA back together (3).

© Kelly Finan

Read the full story.

Interested in reading more?

Magaizne Cover

Become a Member of

Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member?
ADVERTISEMENT