Menu

Infographic: How to Make a Brain Organoid

Mini-brains can be grown in culture or printed.

Aug 1, 2018
Ashley Yeager
THE SCIENTIST STAFF

To grow brain organoids, researchers have traditionally cultured human induced pluripotent stem cells (iPSCs), which develop into clumps of tissue with embryonic features. That tissue is then bathed in proteins to spur the development of nervous-system progenitor cells, which are put into nutrient-containing oil droplets and floated in a spinning bioreactor. After 10 days, neurons begin to form, and in about a month, the neurons begin to spontaneously arrange themselves into different regions that mimic an intact brain. 

To accelerate this process and gain more control over the arrangement of cells in the organoid, researchers have started using 3-D printers. The cells start in a hydrogel-based bio-ink, which is then printed into oil droplets surrounded by a lipid layer. Using separate nozzles, the printer can arrange different cell types in specific patterns. Once printed, the cellular constructs can be transferred to a liquid medium so they can continue to grow in culture. An organoid can be created in this way in just five minutes.


Construction timeSizeSurvival timeCell arrangementImplanted in rodents
Classic brain organoid protocol30 daysUp to 4 mm6–12 monthsSpontaneousYes
3-D printed cerebral tissue approach5 minutes1 mmUp to 2 months, so farPrecise patternsNot yet

Read the full story.

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Releases First FDA-Cleared Digital PCR System and Test for Monitoring Chronic Myeloid Leukemia Treatment Response
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced that its QXDx AutoDG ddPCR System, which uses Bio-Rad’s Droplet Digital PCR technology, and the QXDx BCR-ABL %IS Kit are the industry’s first digital PCR products to receive U.S. Food and Drug Administration (FDA) clearance. Used together, Bio-Rad’s system and kit can precisely and reproducibly monitor molecular response to treatment in patients with chronic myeloid leukemia (CML).
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.