Menu

Infographic: Resurrecting Ancient Proteins

Learn the basic steps researchers take when reconstructing proteins from the past and how these biomolecules can inform engineering projects.

Jul 1, 2018
Amber Dance

Ancestral sequence reconstruction relies on phylogeny and statistics to infer the most likely amino acid

SEQUENCE ALIGNMENT

Scientists collect sequences from databanks of the modern versions of the protein of interest from different organisms.

© wikimedia commons/Miguel Andrade

TREE BUILDING

Computer algorithms construct a phylogenetic tree for the proteins (Curr Opin Struct Biol, 38:37–43, 2016).

ANCESTRAL RECONSTRUCTION

The programs can then infer the sequences that likely existed at nodes of the tree, before the modern species evolved.

LABORATORY TESTS

Finally, the scientists order synthetic DNA and generate those proteins in the lab to use for experiments.

Ensuring accuracy

One way to ensure that an ASR protein behaves like the true ancestor is to resurrect and test not only the best amino acid sequence generated by the algorithms, but a few proteins with the second-best guesses, or third-best guesses, and so on. If those alternative ancestors act like the best-guess version, then researchers figure the conclusions are probably robust. Recently, evolutionary synthetic biologist Eric Gaucher of Georgia State University tested ASR accuracy in a different way. He generated an entirely artificial phylogenetic tree, starting with red fluorescent protein and randomly mutating it to evolve 19 diversely colored fluorescent proteins. Then he used ASR to predict the ancestor of those 19 descendants, and compared the results to the true ancestors. The results were reassuring. Overall, the five different ASR algorithms he tried identified the ancestral sequence with about 97 percent accuracy (Nat Commun, 5:12847, 2016).

EVOLVING PROTEINS: The experimental evolution began with a red fluorescent protein gene (left). The 19 resulting proteins were sequenced, and the data were used to infer the sequences of the node proteins. (Colors represent protein fluorescence. The number of nonsynonymous and synonymous substitutions are shown along each branch.)
Nat Commun, 5:12847, 2016

The Perfect Starting Point

Bioengineers love resurrected proteins because they often combine two desirable features: thermostability and promiscuity. For example, researchers at the University of Granada in Spain reconstructed several versions of an antibiotic-resistance protein called beta-lactamase, going back as far as 3 million years. As the protein evolved, its melting point dropped from more than 80 °C  to less than 60 °C. It also became more specific for penicillin, losing its ability to neutralize other drugs (J Am Chem Soc, 135:2899–902, 2013).


J Am Chem Soc, 135:2899–902, 2013

Read the full story.

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
WIN a VIAFLO 96/384 to supercharge your microplate pipetting!
INTEGRA Biosciences is offering labs the chance to win a VIAFLO 96/384 pipette. Designed to simplify plate replication, plate reformatting or reservoir-to-plate transfers, the VIAFLO 96/384 allows labs without the space or budget for an expensive pipetting robot to increase the speed and throughput of routine tasks.
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!