Menu

Infographic: Treating with CRISPR

Researchers explore the use of the gene-editing technology to manipulate cells both in a dish and in patients.

Aug 1, 2018
Shawna Williams

Researchers hope to develop treatments for a wide range of genetic disorders, and even cancer, using CRISPR-Cas9 gene editing. These clinical interventions may take the form of ex vivo therapy, in which cells are edited in the lab and transfused into patients, or in vivo therapy, which delivers gene-editing machinery directly to the affected tissues.

Ex vivo

Approach: Extract cells from the blood, modify them using CRISPR, expand the edited cells, and infuse them back into the body. Alternatively, modified cells from a healthy donor could be expanded and infused into multiple patients.

Examples: Several research groups and companies are developing therapies that modify autologous hematopoietic stem cells to treat sickle cell disease and/or β-thalassemia, with trials beginning as early as this year. Trials are in progress to modify autologous or donor T cells with customized receptors to better fight cancer. 

Hurdles: Regulators have little experience with customized, cell-based therapies, and the manufacturing process is considerably more complex than the production of conventional drugs.

THE SCIENTIST STAFF


In vivo

Approach: Use a vector, such as a nanoparticle or virus, to deliver CRISPR-Cas9 to targeted cells or tissues within the body.

Examples: Editas Medicine is planning to file an IND for a trial in which an adeno-associated virus carrying CRISPR-Cas9 will be injected into the eye as a therapy for Leber congenital amaurosis. Intellia Therapeutics plans to file an IND next year for a therapy for transthyretin amyloidosis that would use CRISPR-bearing lipid nanoparticles to knock out production of a disease-causing abnormal protein in the liver.

Hurdles: Delivering CRISPR-Cas9 to a sufficient number of target cells to have a therapeutic impact is a major challenge. Potential safety concerns include the possibility of off-target edits to the genome, and of provoking an immune response in recipients.

THE SCIENTIST STAFF


Read the full story.

April 2019

Will Car T Cells Smash Tumors?

New trials take the therapy beyond the blood

Marketplace

Sponsored Product Updates

Getting More Consistent Results by Knowing the Quality of Your Protein
Getting More Consistent Results by Knowing the Quality of Your Protein
Download this guide from NanoTemper to learn how to identify and evaluate the quality of your protein samples!
Myth Busting: The Best Way to Use Pure Water in the Lab
Myth Busting: The Best Way to Use Pure Water in the Lab
Download this white paper from ELGA LabWater to learn about the role of pure water in the laboratory and the advantages of in-house water purification!
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu Corporation announces the release of the Nexera Ultra High-Performance Liquid Chromatograph series, incorporating artificial intelligence as Analytical Intelligence, allowing systems to detect and resolve issues automatically. The Nexera series makes lab management simple by integrating IoT and device networking, enabling users to easily review instrument status, optimize resource allocation, and achieve higher throughput.
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
Increasing accuracy and reducing cost barriers, IDT’s innovative system delivers simple and cost-effective amplicon sequencing