Infographic: A Painful Pathway

Since the mid-2000s, the voltage-gated sodium channel NaV1.7 has emerged as a promising target for a new class of analgesics.

Dec 31, 2017
Catherine Offord


NaV1.7 controls the passage of sodium ions into sensory neurons. Hyperactivity in NaV1.7 is associated with increased firing in pain-sensing neurons—and thus agony even in the absence of painful stimuli—while deletion of the channel appears to cause pain insensitivity.

© THOM GRAVESLike other voltage-gated sodium channels, NaV1.7 consists of four voltage-sensing domains (I to IV) surrounding a central pore through which sodium ions pass into the neuron. As a sensory neuron fires (from left to right), voltage-gated sodium channels cycle through three states: from closed to open, and finally inactivated.

For a short period following opening, the voltage-sensing domains remain open, but the pore is blocked by a positively charged particle in a ball-and-chain mechanism.

Voltage-sensing domains open during an action potential to allow sodium ions to flow into the neuron.

Voltage-sensing domains pinch shut the pore when the neuron is at rest.

Precision Targeting

Many companies are working to develop molecules that inhibit the NaV1.7 channel. But while the basics of the protein complex’s function are well established, researchers are still learning how best to target NaV1.7 in order to achieve analgesia. Early attempts to inhibit the channel used small molecules to block the pore region, but because this pore is well-conserved among the NaV family, these drugs generally showed low selectivity for NaV1.7. Recent efforts have targeted the less-conserved voltage-sensing domains of NaV1.7 to lock the channel in a closed or inactivated state. Hitting the right part of the protein is not the only challenge—even with the development of apparently highly potent NaV1.7 blockers, researchers are now questioning just where along a sensory neuron a drug needs to act in order to be maximally analgesic.


A. Small molecules that target NaV1.7’s voltage-sensing domains show high specificity for the receptor, and have shown promise in early stage trials.

B. Toxin-derived peptides also show high specificity for NaV1.7’s voltage-sensing domains, and promising preclinical results have piqued the interest of a handful of companies.

C. Drugs that target the channel’s pore are relatively nonselective, and few are currently being pursued as analgesics.





© THOM GRAVEThe failure of many supposed NaV1.7 blockers to effectively blunt pain has some researchers questioning the assumption that inhibiting NaV1.7 in the periphery is sufficient. Because sensory neurons often have axons that terminate inside the central nervous system, drugs targeting NaV1.7 may need to cross the blood-brain barrier to boost their painkilling effect.

Read the full story.


September 2018

The Muscle Issue

The dynamic tissue reveals its secrets


Sponsored Product Updates

Enabling Genomics-Guided Precision Medicine

Enabling Genomics-Guided Precision Medicine

Download this eBook from Qiagen to learn more about the promise of precision medicine and how QCITM Interpret can help deliver better care with better knowledge.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Launches CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin for Process Protein Purification

Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced the launch of two new chromatography media for process protein purification: CHT Ceramic Hydroxyapatite XT Media and Nuvia HP-Q Resin.

Immunophenotypic Analysis of Human Blood Leukocyte Subsets

Immunophenotypic Analysis of Human Blood Leukocyte Subsets

Download this application note from ACEA Biosciences, Inc., to find out how to perform an immunophenotypic analysis of a human blood sample utilizing 13 fluorescent markers using a compact benchtop flow cytometer equipped with 3 lasers!