Menu

Infographic: Caveolae Form and Function

Researchers interrogate the cavernous structures on the surface of cells to better understand how they affect membrane function.

Jun 1, 2018
Ben Nichols

© TAMI TOLPACaveolae form when caveolin oligomerizes in the membrane before cavin proteins associate. Caveolae then fold inward and can form clusters.

Data from recent studies have led scientists to suspect that caveolae may have a role in buffering changes in cell membrane tension by changing their conformation. Indeed, membrane tension causes flattening of caveolae and loss of clusters of caveolae. It is probable, but not fully proven, that cavin and caveolin proteins can switch between flat and invaginated complexes on the membrane, but other proteins known as EHDs resist these processes.

Read the full story.

April 2019

Will Car T Cells Smash Tumors?

New trials take the therapy beyond the blood

Marketplace

Sponsored Product Updates

Myth Busting: The Best Way to Use Pure Water in the Lab
Myth Busting: The Best Way to Use Pure Water in the Lab
Download this white paper from ELGA LabWater to learn about the role of pure water in the laboratory and the advantages of in-house water purification!
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu's New Nexera UHPLC Series with AI and IoT Enhancements Sets Industry Standard for Intelligence, Efficiency and Design
Shimadzu Corporation announces the release of the Nexera Ultra High-Performance Liquid Chromatograph series, incorporating artificial intelligence as Analytical Intelligence, allowing systems to detect and resolve issues automatically. The Nexera series makes lab management simple by integrating IoT and device networking, enabling users to easily review instrument status, optimize resource allocation, and achieve higher throughput.
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
IDT lowers genomic barriers with powerful rhAmpSeq™ targeted sequencing system
Increasing accuracy and reducing cost barriers, IDT’s innovative system delivers simple and cost-effective amplicon sequencing
Bio-Rad Introduces Isotype-Specific Secondary Antibodies
Bio-Rad Introduces Isotype-Specific Secondary Antibodies
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb), a global leader of life science research and clinical diagnostic products, today announced the launch of its isotype-specific secondary antibodies. This new range of recombinant monoclonal antibodies, directed against the three main mouse isotypes: IgG1, IgG2a, and IgG2b, offer improved signal detection and specificity in imaging, ELISA, flow cytometry, and western blotting.