Menu

Infographic: Tumor-Associated Macrophages and Cancer

The immune cells play various roles in the tumor—some that assist cancer's spread, and others that hinder it.

Mar 31, 2018
Amanda B. Keener

T

umors use chemokine signals to draw monocytes and tissue-resident macrophages into the tumor microenvironment, where the cells become tumor-associated macrophages (TAMs). Once believed to be wholly supportive of cancerous growth, these cells also play important roles in protecting against disease.

Tumor-assisting macrophages: The M2 phenotype

TAMs can take on a variety of roles to support cancer cell survival and dissemination. Originating either from monocytes that come from bone marrow, or tissue-resident macrophages that arise during embryonic development, they can repress antitumor immunity by secreting cytokines such as IL-10, which blocks dendritic cell activation, and TGF-β, which blunts T-cell responses (1). A specific subset of TAMs that produce a protein called Tie2 can also stimulate angiogenesis through secretion of vascular endothelial growth factor (VEGF) and other molecules (2). At the same time, Tie2+ macrophages come together with cancer cells and blood vessel endothelial cells to form complexes, called tumor microenvironments of metastasis (TMEMs), that create openings in blood vessels (3). Macrophages at distant sites then help cancer cells exit blood vessels and seed new tumors (4).

© SCOTT LEIGHTON

 

Tumor-killing macrophages: The M1 phenotype

TAMs have the potential to aid antitumor immune responses by presenting cancer cell antigens to T cells and producing cytokines that activate dendritic cells and T cells (1). Macrophages are also experts at phagocytosing and degrading foreign cells, including cancer cells (2).

 
 
© SCOTT LEIGHTON

Read the full story.

July 2019

On Target

Researchers strive to make individualized medicine a reality

Marketplace

Sponsored Product Updates

DNASTAR® announced the release of Lasergene 16 Software
DNASTAR® announced the release of Lasergene 16 Software
DNASTAR® announced the release of Lasergene 16 today, which includes a broad range of improvements in for analysis of DNA, RNA and protein sequence data, as well as new advancements for predicting and analyzing protein structures. 
Arbor Biosciences Partners with Curio Genomics for Analysis of IWGSC Wheat Exome
Arbor Biosciences Partners with Curio Genomics for Analysis of IWGSC Wheat Exome
Arbor Biosciences, a division of Chiral Technologies, Inc and worldwide leader in next generation sequencing (NGS) target enrichment, announces a partnership with Curio Genomics for bioinformatics analysis of the wheat genome.
IDT and Washington University join forces to increase access to the latest NGS technologies
IDT and Washington University join forces to increase access to the latest NGS technologies
As part of its commitment to advocate for the genomics age, Integrated DNA Technologies (IDT) aims to lower the barriers to access the latest NGS technologies.
Bio-Rad Launches Bio-Plex Pro Human Immunotherapy Panel 20-plex Multiplex Assay, a targeted tool for researching signaling networks in Immunotherapy Research
Bio-Rad Launches Bio-Plex Pro Human Immunotherapy Panel 20-plex Multiplex Assay, a targeted tool for researching signaling networks in Immunotherapy Research
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) July 15, 2019 announced the launch of its Bio-Plex Pro Human Immunotherapy Panel 20-plex, a multiplex immunoassay that offers a targeted approach for Immunotherapy Research.