Menu

Infographic: Using Gene Drive to Control Malaria

For years, researchers have looked to genetically modify mosquitoes to prevent the spread of malaria. Now they have a promising strategy.

Dec 31, 2016
Tony Nolan and Andrea Crisanti

While introducing genetic changes has long been supported by advancing technologies, getting those modifications to spread through wild mosquito populations has remained a challenge. Now, the newly understood concept of gene drive, in which genetic elements can spread more rapidly than those following traditional Mendelian inheritance principles, may finally solve the problem.

HOW GENE DRIVE WORKS

HOW GENE DRIVES SPREAD

Without gene drive, an allele will be passed from generation to generation via traditional Mendelian genetics. That is, when a heterozygous individual carrying only one copy of the allele mates with an individual lacking it altogether, only half of their offspring will inherit the genetic segment. But in a gene drive that spreads the allele to the homologous chromosome in the germline, all progeny will receive a copy. With gene drive, it’s even possible for a deleterious allele to spread through the population, despite imposing a severe fitness cost.

HOW GENE DRIVE COULD BE USED TO CONTROL MALARIA

There are three general approaches to implementing gene drives in mosquito populations for the control of malaria: (1) spread a deleterious mutation to reduce mosquito numbers, (2) distort the sex ratio of the population, or (3) deliver cargo to render mosquitoes resistant to the malaria parasite.

(1) POPULATION-WIDE GENE KNOCKOUT

A gene drive can be designed to disrupt a mosquito gene essential for survival or reproduction. In this case, researchers would restrict its expression to the germline, such that individuals that have one copy of the inserted genetic element aka gene drive) still have a functioning copy of the mosquito gene in the rest of their body where it is needed and therefore act as carriers of the gene drive. In the germline, however, the gene drive spreads, increasing the proportion of gametes that carry it. When released into the wild, these animals would mate and pass on the gene drive to all offspring. When two mosquitoes carrying the gene drive mate, none of their offspring would inherit a functional copy of the essential gene, decimating the population.

(2) SKEWED SEX RATIO

A gene drive designed to selectively destroy the X chromosome in Anopheles gambiae sperm will result in the nonviability of those sperm, leaving only sperm carrying Y chromosomes. This will lead to a sex ratio greatly skewed toward males, which will eventually cause the population to crash.

(3) POPULATION-WIDE GENE KNOCK-IN
A gene drive can also be designed to deliver a cargo, such as an antimicrobial peptide, that makes mosquitoes resistant to the malaria parasite. In this case, the antimalarial cargo would be expressed wherever the parasite is most vulnerable, whereas germline expression of the gene drive would guarantee its spread through the population.

Read the full story.

January 2019

Cannabis on Board

Research suggests ill effects of cannabinoids in the womb

Marketplace

Sponsored Product Updates

FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX® digital PCR technology to be acquired by QIAGEN
FORMULATRIX has announced that their digital PCR assets, including the CONSTELLATION® series of instruments, is being acquired by QIAGEN N.V. (NYSE: QGEN, Frankfurt Stock Exchange: QIA) for up to $260 million ($125 million upfront payment and $135 million of milestones).  QIAGEN has announced plans for a global launch in 2020 of a new series of digital PCR platforms that utilize the advanced dPCR technology developed by FORMULATRIX combined with QIAGEN’s expertise in assay development and automation.
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
Application of CRISPR/Cas to the Generation of Genetically Engineered Mice
With this application note from Taconic, learn about the power that the CRISPR/Cas system has to revolutionize the field of custom mouse model generation!
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
Translational Models of Obesity, Dysmetabolism, Diabetes, and Complications
This webinar, from Crown Bioscience, presents a unique continuum of translational dysmetabolic platforms that more closely mimic human disease. Learn about using next-generation rodent and spontaneously diabetic non-human primate models to accurately model human-relevant disease progression and complications related to obesity and diabetes here!
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
BiochemAR: an augmented reality app for easy visualization of virtual 3D molecular models
Have you played Pokemon Go? Then you've used Augmented Reality (AR) technology! AR technology holds substantial promise and potential for providing a low-cost, easy to use digital platform for the manipulation of virtual 3D objects, including 3D models of biological macromolecules.