Menu

Under Pressure

The causes and consequences of physical forces in the tumor microenvironment

Apr 1, 2016
Lance L. Munn and Rakesh K. Jain

© N.R.FULLER, SAYO-ART LLC

Tumors create and experience a variety of forces. Pockets of excessive cell growth lead to increased mechanical stresses on and deformation of the extracellular matrix (ECM), which is made up of fibroblasts, collagen, and other fibers. Greater numbers of infiltrating stromal and immune cells can similarly stretch the matrix, as can hydrogel components such as hyaluronan molecules, which absorb water and swell. The deformed matrix, in turn, may facilitate the metastatic escape of cancer cells and cause blood vessels within the tumor to collapse, inhibiting the delivery of nutrients, removal of waste, and entry of tumor-targeted drugs. Reduced blood flow can also result in hypoxia, which may lead to immunosuppression, inflammation, and metastasis, as well as lowered efficacy of chemo-, radio-, and immunotherapies. Compressive stresses may also induce cells to become more invasive, perhaps by inducing the expression of oncogenes.

In addition to these solid forces, fluid pressure exerted by the circulatory system can force interstitial fluid to flow from the tumor. Escape of plasma from blood vessels produces shear stresses that can affect cancer cells, blood vessels, myofibroblasts, and immune cells, as well as promote tumor progression by recruiting blood vessels into the tumor and guiding the migration of cancer cells out of the tumor.

Read the full story.

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.
Corning Introduces New 1536-well Spheroid Microplate
Corning Introduces New 1536-well Spheroid Microplate
High-throughput spheroid microplate benefits cancer research, drug screening