Menu

Climate Change Research Gets Closer to Nature

Researchers devise more-realistic means of forecasting the effects of climate change on complex marine ecosystems.

Jul 1, 2018
Ruth Williams
FUTURISTIC: Tanks containing seawater, sand, rocks, and animals can have their water temperature and acidity controlled to reflect current conditions (right) and those that may result from climate change. Seawater continually enters the mesocosm tanks and then circulates through enrichment tanks, where temperature and acidity are controlled, and returns to the mesocosms.
SEE FULL INFOGRAPHIC: WEB 
The Scientist staff

Increasing levels of atmospheric carbon dioxide are thought to be acidifying and warming Earth’s oceans, causing significant changes to marine and terrestrial ecosystems around the world. But many forecasts of future changes to ecosystems have been based on simplified laboratory experiments that include few or even just a single species.

“Looking at individual organisms gives you a very isolated if not distorted picture, so to really understand how communities are responding to global change, you need to go to community-level experimentation,” says biological oceanographer Ulf Riebesell of GEOMAR Helmholtz Centre for Ocean Research in Kiel, Germany.

Riebesell and marine ecologist Ivan Nagelkerken of the University of Adelaide in Australia are among the researchers now employing mesocosm experiments—a method that straddles the divide between field- and laboratory-based approaches to allow the study of naturalistic environments under controlled conditions.

While mesocosms themselves are not a novel concept, says Nagelkerken, “they have hardly ever been used in climate change research.” 

Riebesell’s mesocosms consist of 2-meter-diameter, columnar polyurethane bags descending into and containing seawater but cut off from the surrounding ocean. Recently, he and colleagues have found that ocean acidification (via introduction of dissolved carbon dioxide) promoted herring larvae survival—possibly because phytoplankton biomass, a food source, increased. The finding runs counter to those of laboratory studies (Nat Ecol Evol, 2:836–40, 2018).

Nagelkerken’s mesocosms are 2-meter-diameter tanks, each containing 1,800 liters of seawater pumped in from the ocean, as well as rocks, sediment, and dozens of species of small fishes, large and small invertebrates, algae, and plankton. While Riebesell’s mesocosms represent the open-ocean environment, Nagelkerken’s recreate near-shore habitats. In studies published earlier this year, he and colleagues found that while ocean acidification alone has a positive effect on herbivores and carnivores, seawater warming, with or without acidification, caused the proliferation of cyanobacteria—which outcompete edible algae but aren’t a food source for most marine animals—and the subsequent collapse of the food web (Nat Clim Chang, 8:229–33; PLOS Biol, 16:e2003446).

“Such mesocosm experiments are important for testing higher-level ecological effects that might not otherwise be detected with simpler experimental designs,” says coral reef ecologist Philip Munday of James Cook University in Australia who was not involved in the studies.  

Approach
Set up
Cost per experiment
Replicates
Relevance to real world
Single species
Small, bare aquaria holding anywhere from 10 to 100 liters of seawater, depending on the species
Hundreds to thousands of dollars
Small size and low costs allow for many conditions to be tested simultaneously, with multiple replications
Unknown
Mesocosm
Large enclosures with hundreds to thousands of liters containing elements of real-world ecosystems
Tens of thousands to hundreds of thousands of dollars
Replications are limited to a few per experimental condition because of cost and size
Expected to be strong, as naturalistic ecosystems are recreated with a large variety of interacting species

February 2019

Big Storms Brewing

Can forests weather more major hurricanes?

Marketplace

Sponsored Product Updates

Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Showcases New Automation Features of its ZE5 Cell Analyzer at SLAS 2019
Bio-Rad Laboratories, Inc. (NYSE: BIO and BIOb) today showcases new automation features of its ZE5 Cell Analyzer during the Society for Laboratory Automation and Screening 2019 International Conference and Exhibition (SLAS) in Washington, D.C., February 2–6. These capabilities enable the ZE5 to be used for high-throughput flow cytometry in biomarker discovery and phenotypic screening.
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Andrew Alliance and Sartorius Collaborate to Provide Software-Connected Pipettes for Life Science Research
Researchers to benefit from an innovative software-connected pipetting system, bringing improved reproducibility and traceability of experiments to life-science laboratories.
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Life Sciences to Feature 3D Cell Culture Technologies at SLAS 2019
Corning Incorporated (NYSE: GLW) will showcase advanced 3D cell culture technologies and workflow solutions for spheroids, organoids, tissue models, and applications including ADME/toxicology at the Society for Laboratory Automation and Screening (SLAS) conference, Feb. 2-6 in Washington, D.C.
Corning Introduces New 1536-well Spheroid Microplate
Corning Introduces New 1536-well Spheroid Microplate
High-throughput spheroid microplate benefits cancer research, drug screening