Digital DNA Detection

A CRISPR-based electronic sensor flags target DNA sequences at high speed.

Written byRuth Williams
| 3 min read
RNA cas9

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: MODIFIED FROM
© ISTOCK.COM, Meletios Verras

Searching a sample of DNA for a particular sequence—be it a mutation, a researcher-inserted transgene, or evidence of an infecting organism—is a common practice in many molecular biology and diagnostic laboratories around the world. Often, such searches take the form of target amplification, which involves using sequence-specific oligonucleotide primers and the action of a DNA polymerase to pull out the sequence of interest. But amplification not only adds a step to the search process—requiring optimization, reagents, and time—it can also introduce errors such as amplification bias.

To move away from amplification, Kiana Aran of the Keck Graduate Institute in California and her colleagues turned to the CRISPR-Cas family of nucleases, which, when paired with a specific guide RNA, can scour the whole genome to find and cut a precise sequence. Aran, whose background is in electrical engineering, incorporated this search capacity into an electrical ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

On Target July Issue The Scientist
July/August 2019

On Target

Researchers strive to make individualized medicine a reality

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo