Menu

Here Comes Single-Cell Optogenetics

A new protein may allow researchers to home in on individual neurons, determining their activity minute by minute.

Mar 1, 2018
Ruth Williams

ON TARGET: Precision illumination techniques target light to individual neuronal cell bodies, but neighboring cells may be activated if their dendrites or axons lie nearby. Unlike regular opsins, which are distributed throughout the entire neuron, cell body–localized opsins, such as those described by Christopher Baker of the Max Planck Florida Institute for Neuroscience (eLife, 5:e14193, 2016) and now Edward Boyden’s team (Nat Neurosci, 20:1796–1806, 2017), prevent such stray activation. Boyden and his collaborators also use a more responsive channelrhodopsin for high-speed firing.© LUCY READING-IKKANDA

When optogenetics burst onto the scene a little over a decade ago, it added a powerful tool to neuroscientists’ arsenal. Instead of merely correlating recorded brain activity with behaviors, researchers could control the cell types of their choosing to produce specific outcomes. Light-sensitive ion channels (opsins) inserted into the cells allow neuronal activity to be controlled by the flick of a switch.

Nevertheless, MIT’s Edward Boyden says more precision is needed. Previous approaches achieved temporal resolution in the tens of milliseconds, making them a somewhat blunt instrument for controlling neurons’ millisecond-fast firings. In addition, most optogenetics experiments have involved “activation or silencing of a whole set of neurons,” he says. “But the problem is the brain doesn’t work that way.” When a cell is performing a given function—initiating a muscle movement, recalling a memory—“neighboring neurons can be doing completely different things,” Boyden explains. “So there is a quest now to do single-cell optogenetics.”

Illumination techniques such as two-photon excitation with computer-generated holography (a way to precisely sculpt light in 3D) allow light to be focused tightly enough to hit one cell. But even so, Boyden says, if the targeted cell body lies close to the axons or dendrites of neighboring opsin-expressing cells, those will be activated too.

To avoid this, Boyden’s team fused a light-sensitive channelrhodopsin protein to a receptor that localizes to neuronal cell bodies, but not to axons and dendrites. With this approach, the likelihood of hitting just one cell with a targeted laser is far greater. “It eliminates the cross-talk of stimulating nearby cells,” says Robert Singer of the Albert Einstein College of Medicine in New York and Janelia Research Campus in Virginia who was not involved with the work.

This opsin localization trick “is not intrinsically new,” Singer adds—other researchers have used a similar approach. “What is new is the combination of localization with a novel channelrhodopsin.” Boyden’s team used a recently discovered protein that requires less-lengthy and less-powerful light stimulation than other commonly used channelrhodopsins to activate neuronal firing. As a result, the firing was more immediate and predictable, increasing the temporal precision to a millisecond.

“Neurons in the brain fire with millisecond precision,” Boyden explains. Now there’s a single-cell optogenetic technique to match. (Nat Neurosci, 20:1796–1806, 2017) 

SINGLE-CELL OPTOGENETICS (reference)OPSIN USEDFUSION PROTEINTWO-PHOTON STIMULATIONTEMPORAL PRECISION
C.A. Baker et al., eLife, 5:e14193, 2016Human channel-
rhodopsin 2 (hChR2)
A domain of KV2.1 potassium channel,
which localizes mainly to the cell body with a small degree of proximal dendrite localization
180 mW per cell for 150 ms17 ms
O.A. Shemesh et al., Nat Neurosci, 20: 1796–1806, 2017High-photocurrent
 channelrhodopsin (CoChR)
N terminus of kainite receptor subunit
 2 (KAV2), which localizes almost solely
 to the cell body of neurons
30 mW per cell for 10 ms to 30 msLess than 1 ms

 

September 2018

The Muscle Issue

The dynamic tissue reveals its secrets

Marketplace

Sponsored Product Updates

Horizon Discovery introduces Myeloid DNA Reference Standard to support genetic testing of leukemia

Horizon Discovery introduces Myeloid DNA Reference Standard to support genetic testing of leukemia

Horizon Discovery Group plc, a global leader in gene editing and gene modulation technologies, today announced the launch of its Myeloid DNA Reference Standard. The first-to-market large cell-line derived myeloid cancer reference standard designed enables faster, more reliable and more cost-effective assay validation, to support the market in bringing routine testing into practice.

StemExpress LeukopakâNow Available in Frozen Format

StemExpress LeukopakâNow Available in Frozen Format

StemExpress, a Folsom, California based leading supplier of human biospecimens, announces the release of frozen Peripheral Blood Leukopaks. Leukopaks provide an enriched source of peripheral blood mononuclear cells (PBMCs) with low granulocyte and red blood cells that can be used in a variety of downstream cell-based applications.

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

New Antifade Mounting Media from Vector Laboratories Enhances Immunofluorescence Applications

Vector Laboratories, a leader in the development and manufacture of labeling and detection reagents for biomedical research, introduces VECTASHIELD® Vibrance™ – antifade mounting media that delivers significant improvements to the immunofluorescence workflow.

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Best Practices for Sample Preparation and Lipid Extraction from Various Samples

Download this white paper from Bertin Technologies to learn how to extract and analyze lipid samples from various models!